The Informativeness of Research Methods into Ionic Active Sites

  • B. L. Erusalimskii
Part of the Macromolecular Compounds book series (MMCO)


The methods used for the study of non-free-radical active sites which are responsible for the formation of macromolecules are mainly spectroscopic, electrochemical, and quantum-chemical. Among these, spectroscopic methods are used extensively, their application to the study of such species already becoming routine by the 1960’s. The parallel electrochemical methods are important in a small range of suitable systems. Quantum-chemical studies began to advance to general systems only by the mid-seventies.


Vinyl Acetate Ionic Initiator Ionic Agent Lithium Atom Anionic Polymerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Szwarc, Carbanions, Living Polymers and Electron Transfer Processes, Interscience, New York (1968).Google Scholar
  2. 2.
    M. Szwarc (editor), Ions and Ion Pairs in Organic Reactions, Vol. 2, Interscience, New York (1974).Google Scholar
  3. 3.
    Ch. B. Tsvetanov, V. N. Zgonnik, I. Panayotov, and B. L. Erusalimskii, “Langkettige alkalimetallorganische verbindungen vom Type: RCHZCH(CN)M: Herstellung, spektrosckopische und elektrochemische Charackterisierung,” Ann. Chem., 763, 545–548 (1973).Google Scholar
  4. 4.
    L. V. Vinogradova, V. N. Zgonnik, N. I. Nikolaev, and Ch. B. Tsvetanov, “Electric conductivity of polybutadienyl-and polyisoprenyllithium in tetrahydrofuran and dimethoxyethane,” Eur. Polym. J., 15, 545–550 (1979).CrossRefGoogle Scholar
  5. 5.
    I. V. Berlinova, I. M. Panayotov, and Ch. B. Tsvetanov, “Conductivity studies on living polymers with an a-oxide terminal unit in tetrahydrofuran,” Eur. Polym. J., 12, 485–488 (1976).CrossRefGoogle Scholar
  6. 6.
    L. V. Vinogradova, N. I. Nikolaev, V. N. Zgonnik, B. L. Erusalimskii, G. V. Sinitsina, Ch. B. Tsvetanov, and I. M. Panayotov, “Changes in the electrochemical characteristics and the UV spectra of polydienyllithium chains on storage in polar media,” Eur. Polym. J., 17, 517–520 (1981).CrossRefGoogle Scholar
  7. 7.
    A. Persoons, “Field dispersion effects and chemical relaxation in electrolyte solutions of low polarity,” J. Phys. Chem., 78, 1210–1217 (1978).CrossRefGoogle Scholar
  8. 8.
    A. Persoons and M. Van Beylen, “The dynamics of electric field effects in ion-pairing processes,” Pure Appl. Chem., 51, 887–900 (1979).Google Scholar
  9. 9.
    T. E. Hogen-Esch and J. Smid, “Studies of contact and solvent-separated ion pairs of carbanions,” J. Am. Chem. Soc., 88, 307–318 (1966).CrossRefGoogle Scholar
  10. 10.
    R. M. Fuoss, “Non-coulomb variation of ion pairing in polar solvents,” J. Am. Chem. Soc., 100, 5576–5577 (1978).CrossRefGoogle Scholar
  11. 11.
    A Gandini and H. Cheradamé, “Cationic polymerization. Initiation with alkenyl monomers,” Adv. Polym. Sci., 34/35 , 1–289 (1979).CrossRefGoogle Scholar
  12. 12.
    D. W. Grattan and P. H. Plesch, “Ionization of aluminum halides in alkyl halides,” J. Chem. Soc. Dalton Trans., 1734–1744 (1977).Google Scholar
  13. 13.
    D. W. Grattan and P. H. Plesch, “The initiation of polymerization by aluminum halides,” Makromol. Chem., 181, 751–775 (1980).CrossRefGoogle Scholar
  14. 14.
    M. Chmelir, M. Marek, and O. Wichterle, “Polymerization of isobutylene catalyzed by aluminum tribromide,” J. Polym. Sci., C16, 833–839 (1967).Google Scholar
  15. 15.
    M. Chmelir and M. Marek, “Influence of some Friedel—Crafts halides on the polymerization of isobutylene catalyzed by aluminum bromide,” J. Polym. Sci., C23, 223–229 (1968).Google Scholar
  16. 16.
    P. Lopour and M. Marek, “Polymerisation des Isobutylenes durch zweikomponenten Katalysatorsysteme die Aluminiumhalogenid als eine der Kompenente enthalten,” Makromol. Chem., 134, 23–31 (1970).CrossRefGoogle Scholar
  17. 17.
    A. Ledwith and D. C. Sherrington, “Stable organic salts: Ion-pair equilibria and their use in cationic polymerization,” Adv. Polym. Sci., 19, 1–56 (1975).CrossRefGoogle Scholar
  18. 18.
    K. Matyjaszewski, S. Slomkowski, and S. Penczek, “Kinetics and mechanism of the cationic polymerization of tetrahydrofuran in solution: THF—CH2C12 and THF—CH2C12/CH3NO2 systems,” J. Polym. Sci., Polym. Chem. Ed., 17, 2413–2422 (1979).CrossRefGoogle Scholar
  19. 19.
    K. Matyjaszewski, S. Slomkowski, and S. Penczek, “Kinetics and mechanism of the cationic polymerization of tetrahydrofuran in solution: THF—CH3NO2 system,” J. Polym. Sci., Polym. Chem. Ed., 17, 69–80 (1979).CrossRefGoogle Scholar
  20. 20.
    K. Brzezinska, K. Matyjaszewski, and S. Penczek, “Macroion pairs and macroions in the kinetics of polymerization of oxepane,” Makromol. Chem., 179, 2387–2395 (1978).CrossRefGoogle Scholar
  21. 21.
    S. Penczek, P. Kubisa, and K. Matyjaszewski, “Cationic ring-opening polymerization,” Adv. Polym. Sci., 37, 1–149 (1980).CrossRefGoogle Scholar
  22. 22.
    D. W. Grattan and P. H. Plesch, “Binary ionogenic equilibria,” Electroanal. Chem., 103, 81–94 (1979).CrossRefGoogle Scholar
  23. 23.
    M. Szwarc (editor), Ions and Ion Pairs in Organic Reactions, Inter-science, New York (1972).Google Scholar
  24. 24.
    V. N. Zgonnik, E. Yu. Melenevskaya, and B. L. Erusalimskii, “The study of active centers in anionic polymerization using spectroscopic and quantum-chemical methods,” Usp. Khim., 47, 1479–1503 (1978).Google Scholar
  25. 25.
    S. Bywater, “Spectroscopic studies on the nature of the active centers in anionic polymerization,” J. Polym. Sci., 12, 549–553 (1980).Google Scholar
  26. 26.
    A. Andresen, “UV-Spektroskopische Untersuchungen an homogenen Ziegler—Natta Katalysatoren mit Methylalumoxan als Katalysatorkomponente,” Dissertation, Hamburg (1980).Google Scholar
  27. 27.
    V. M. Sergutin, V. N. Zgonnik, and K. K. Kalnin’sh, “The study of the spectrum of oligopentadienyllithium and its complexes with electron donors,” Vysokomol. Soedin., A22, 415–421 (1980).Google Scholar
  28. 28.
    Ch. B. Tsvertanov, I. M. Panayotov, and B. L. Erusalimskii, “Investigation by means of IR spectroscopy of styrene oligomers containing acrylonitrile active ends,” Eur. Polym. J., 10, 557–562 (1974).CrossRefGoogle Scholar
  29. 29.
    Ch. B. Tsvetanov and I. M. Panayotov, “On the nature of the active centers in the initial stages of the methacrylonitrile anionic polymerization — I. Spectral studies,” Eur. Polym. J., 11, 209–214 (1975).CrossRefGoogle Scholar
  30. 30.
    L. Lochmann and J. Trekoval, “Esters of diacids and oligo (carboxylic acid)s (oligomers of methyl methacrylate) substituted in the a-position with an alkali metal. Their stability and IR spectra,” Makromol. Chem., 183, 1361–1370 (1982).CrossRefGoogle Scholar
  31. 31.
    V. N. Zgonnik, A. A. Davidyan, N. I. Nikolaev, and E. R. Dolinskaya, “On complex formation in polydiethyllithium chains with electron donors in the presence of monomer in a hydrocarbon medium,” Vysokomol. Soedin., A25, 749–754 (1983).Google Scholar
  32. 32.
    S. Brownstein, S. Bywater, and D. J. Worsfold, “Allyl alkali metal compounds,” J. Organomet. Chem., 199, 1–8 (1980).CrossRefGoogle Scholar
  33. 33.
    M. Schlosser and M. Stahle, “Nicht-ebene Strukturen von Allyl und Pentadienylmetall-Verbindungen,” Angew. Chem. Supppl., 198–208 (1982).Google Scholar
  34. 34.
    M. Schlosser and M. Stähle, “Magnesium, Lithium-and Kaliumverbindungen vom Allyl-Typ: ¶-order a-Strukturen?” Angew. Chem., 92, 497–499 (1980).CrossRefGoogle Scholar
  35. 35.
    M. Stähle and M. Schlosser, “Neue 13C-spektroskopische Untersuchungen zur Struktur und Allylmetall-Verbindungen,” J. Organo-met. Chem., 220, 277–283 (1981).Google Scholar
  36. 36.
    P. West, J. I. Purmort, and S. V. McKinley, “The ionic character of allyllithium,” J. Am. Chem. Soc., 90, 797–798 (1968).CrossRefGoogle Scholar
  37. 37.
    G. Boche, K. Buckle, D. Martens, and D. R. Schneider, “Konformation und Rotationsbarriere bei 1,3-Diphenyllithium Verbindungen,” Ann. Chem., 1135–11771 (1980).Google Scholar
  38. 38.
    H. U. Siehl and H. Mayr, “Stable vinyl cations. Direct spectroscopic observation of substituted vinyl-cations,” J. Am. Chem. Soc., 104, 909–910 (1982).CrossRefGoogle Scholar
  39. 39.
    G. Fraenkel, M. I. Geckle, A. Kaylo, and D. W. Estes, “Effects of ligands on ion-pairing behavior of benzylic lithium compounds,” J. Organomet. Chem., 197, 249–259 (1980).CrossRefGoogle Scholar
  40. 40.
    Y. Firat and S. Bywater, “A 13C-NMR investigation of a dimer anion of a-methylstyrene,” Eur. Polym. J., 18, 265–267 (1982).CrossRefGoogle Scholar
  41. 41.
    L. Vancea and S. Bywater, “Carbon-13 nuclear magnetic resonance of anion pairs related to acrylate polymerization. 1. Monomericmodels,”Macromolecules, 14, 1321–1323 (1981).Google Scholar
  42. 42.
    L. Vancea and S. Bywater, t13C-NMR studies on anion pairs related to acrylate polymerization. 2. Dimer models, “ Macromolecules, 14, 1776–1778 (1981).CrossRefGoogle Scholar
  43. 43.
    G. Henrici-Olive’ and S. Olive’, “Koordinative Polymerisation and löslichen Ubergangsmetallkatalysatoren,” Adv. Polym. Sci., 6, 421–472 (1969).CrossRefGoogle Scholar
  44. 44.
    G. Fink and R. Rottler, “ethyleninsertion durch lösliche Ziegler Katalysatoren. Direckter Einblick durch reagierendes Ethylen-13C mit Hilfe der13v-NMR Spektroskopie,” Angew. Makromol. Chem., 94, 24–47 (1981).Google Scholar
  45. 45.
    G. Fink, R. Rottler, and C. G. Kreiter, “Die Primärkomplexbildung in löslishen Ziegler-katalysatorsystemen. Kinetische und thermodinamische baten durch 13C-NMR-Spektroscopie,” Angew. Macromol. Chem., 96, 1–20 (1981).CrossRefGoogle Scholar
  46. 46.
    G. Olive’ and S. Olive’, Polymerisation. Katalyse-KinetikMechanismen, Verlag Chemie, Weinheim (1969).Google Scholar
  47. 47.
    G. Henrici-Olive’ and S. Olive’, “Mechanism for Ziegler-Natta Catalysis,” Chemtech.,, 746–752 (1981).Google Scholar
  48. 48.
    Ch. B. Tsvetanov, Yu. E. Eizner, and B. L. Erusalimskii, “Structure of terminal and penultimate units of a living chain of polyacrylonitrile with lithium counterion. Quantum chemical investigation,” Eur. Polym. J., 16, 219–226 (1980).CrossRefGoogle Scholar
  49. 49.
    P. A. Berlin, V. L. Lebedev, A. A. Bagatur’yants, and K. S. Kazanskii, “Quantum-chemical modeling of the active centers in the anionic polymerization of ethylene oxide,” Vysokomol. Soedin., A22, 1600–1606 (1980).Google Scholar
  50. 50.
    K. S. Kazanskii, “Donor—acceptor and solvation interactions in anionic polymerization of some heterocycles,” Pure Appl. Chem., 53, 1645–1661 (1981).Google Scholar
  51. 51.
    Yu. E. Eizner and B. L. Erusalimskii, The Electronic Aspect of Polymerization Reactions [in Russian], Nauka, Leningrad (1976).Google Scholar
  52. 52.
    I. A. Abronin, K. Ya. Burshtein, and G. M. Zhidomirov, “The quantum chemical determination of the effect of the solvent on the electronic structure and reactivity of the molecules,” Zh. Strukt. Khim., 21, 145–164 (1980).Google Scholar
  53. 53.
    Yu. E. Eizner and B. L. Erusalimskii, “The electronic structure and geometry of the anionic centers in anionic polymerization of vinyl monomers,” Eur. Polym. J., 12, 59–63 (1976).CrossRefGoogle Scholar
  54. 54.
    B. L. Erusalimskii, N. V. Smirnova, N. S. Dmitrieva, and V. N. Zgonnik, “Quantenchemische Untersuchung von Anionisch Aktiven Zentren am Beispiel von Butyl-und Butenyl-Lithium-Verbindungen,” Acta Polym., 31, 357–362 (1980).CrossRefGoogle Scholar
  55. 55.
    G. B. Erusalimskii and V. A. Kormer, “Quantum-chemical study of the effects of the association phenomenon on the active site structure in butadiene polymerization reactions initiated by organolithium compounds,” Eur. Polym. J., 16, 463–465 (1980).CrossRefGoogle Scholar
  56. 56.
    G. B. Erusalimskii and V. A. Kormer, “A quantum-chemical study of the structure of the active centers and the mechanism of polymerization of 1,3-dienes under the action of organolithium compounds (on a sample of 1,3-butadiene),” Zh. Vses. Khim.Ova., 26, 266–272 (1981).Google Scholar
  57. 57.
    P. H. Plesch, “Cationic polymerization,” Progr. High Polym., 21, 137–188 (1968).Google Scholar
  58. 58.
    N. Bodor, M. J. S. Dewar, and D. H. Lo, “Ground states of o-bonded molecules. XVIII. An improved version of MINDO/2 and its application to carbonium ions and protonated cyclopropanes,” J. Am. Chem. Soc., 94, 5303–5310 (1972).CrossRefGoogle Scholar
  59. 59.
    H. L. Hsieh, “Kinetics of polymerization of butadiene, isoprene, and styrene with alkyllithiums. Part II. Rate of initiation,” J. Polym. Sci., A3, 163–172 (1965).Google Scholar
  60. 60.
    Yu. E. Eizner and B. L. Erusalimskii, “The electron structure of the active centers of a linear oxonium ion,” Vysokomol. Soedin., Al2, 1614–1620 (1970).Google Scholar
  61. 61.
    G. B. Erusalimskii, “A quantum-chemical study of the nature of the active centers in the polymerization of butadiene under the action of organolithium compounds,” Dissertation, Leningrad (1981).Google Scholar
  62. 62.
    A. Bongini, G. Cainelli, G. Cardillo, P. Palmieri, and A. Umani-Ronchi, “A theoretical study of the allyllithium ion pair,” J. Organomet. Chem., 110, 1–6 (1976).CrossRefGoogle Scholar
  63. 63.
    T. Clark, E. T. Jemmis, P. v. R. Schleyer, J. F. Pinckles, and J. A. Pople, “Ab initio structure of allyllithium,” J. Organo-met. Chem., 150, 1–6 (1978).CrossRefGoogle Scholar
  64. 64.
    E. T. Tidwell and B. R. Russell, “Electronic structure and bonding of allyllithium,” J. Organomet. Chem., 80, 175–183 (1974).CrossRefGoogle Scholar
  65. 65.
    J. F. Sebastian, J. R. Grunwell, and B. Hsu, “Electronic structure and geometry of bis(dimethyl ether)allyllithium,” J. Organomet. Chem., 78, C1–C3 (1974).CrossRefGoogle Scholar
  66. 66.
    S. Bywater and D. J. Worsfold, “Charge distribution in disubstituted allyl-alkylmetal compounds by 13C-NMR,” J. Organomet. Chem., 159, 229–235 (1978).CrossRefGoogle Scholar
  67. 67.
    N. M. Geller, Yu. E. Eizner, and V. A. Kropachev, “Change in electron structure of cyclic oxides during their interaction with electron acceptors. Quantum-chemical investigation,” Acta Polym., 32, 144–149 (1981).CrossRefGoogle Scholar
  68. 68.
    N. M. Geller, Yu. E. Eizner, and V. A. Kropachev, “Effect of substituents on the electronic structure of cyclic oxides with an electron acceptor. Quantum-chemical investigation,” Acta Polym., 34, 584–588 (1983).CrossRefGoogle Scholar
  69. 69.
    G. B. Erusalimskii and V. A. Kormer, “Quantum-chemical study of the effect of butadiene interaction with active sites on the polymer microstructure,” Eur. Polym. J., 16, 467–470 (1980).CrossRefGoogle Scholar
  70. 70.
    O. Novaro, E. Blaiston-Barojas, E. Clementi, G. Guinchi, and M. E. Ruiz-Vizcaya, “Theoretical study on a reaction of Ziegler—Natta type catalysis,” J. Chem. Phys., 68, 2237–2351 (1978).CrossRefGoogle Scholar
  71. 71.
    B. R. Armstrong, P. G. Perkins, and J. Stewart, “Theoretical investigation of Ziegler—Natta type catalysis. Part I. Soluble catalyst systems,” J. Chem. Soc. Dalton Trans., 1972–1980 (1972).Google Scholar
  72. 72.
    S. Miertus, O. Kysel, and P. Mâjek, “Quantum-chemical study of the reactivity in anionic polymerization. 1. The effect of the polarity of the medium and alkali-metal cations on the rate of propagation of reaction,” Macromolecules, 12, 418–421 (1979).CrossRefGoogle Scholar
  73. 73.
    S. Miertus, 0. Kysel, and P. Mâjek, “Quantum-chemical study of the reactivity in anionic polymerization. 2. Effect of electronic structure of monomer on the rate of propagation reaction,” Macromolecules, 12, 421–432 (1979).CrossRefGoogle Scholar

Copyright information

© Consultants Bureau, New York 1986

Authors and Affiliations

  • B. L. Erusalimskii
    • 1
  1. 1.Institute of Macromolecular CompoundsAcademy of Sciences of the USSRLeningradUSSR

Personalised recommendations