Propagation of Ultrasound in Solutions of Biological Substances

  • A. P. Sarvazyan


The values of ultrasound velocity and absorption coefficient in solutions are defined by different molecular interactions. There is a large amount of literature on the investigation of molecular characteristics of solutions of biological substances by ultrasonic measurements. The dominant part of this paper is devoted to the measurements of the frequency dependences of ultrasound absorption and the investigation of fast relaxation processes. Substantially fewer works are related to the study of solutions by ultrasound velocity measurements. But such a proportion is a result of the absence of adequate velocity measurement methods and not due to the fact that the absorption coefficient is more informative than the velocity of ultrasound about the characteristics of a solution.


Titration Curve Globular Protein Biological Substance Velocity Increment Ultrasound Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.L. Johnston, S.A. Goss, V. Maynard, J.K. Brady, L.A. Frizzell, W.D. O’Brien, Jr. and F. Dunn, in “Ultrasonic Tissue Characterization II”, M. Linzer, ed., NBS Special publication 25, Washington (1979), p. 20.Google Scholar
  2. 2.
    R.D. White and L.I. Slutsky, Biopolymers 11: 1973 (1972).CrossRefGoogle Scholar
  3. 3.
    H. Inoui, J. Sci. Hiroshima Univ. Ser. A-II 34: 17 (1970).Google Scholar
  4. 4.
    D. Proshke and F. Eggers, Eur. J. Biochem. 26: 490 (1972).CrossRefGoogle Scholar
  5. 5.
    L.M. Rhodes and P.R. Shimmel, Biochemistry 10: 4426 (1971).PubMedCrossRefGoogle Scholar
  6. 6.
    P.R. Hemmes, L. Oppenheimer and F. Jordan, J. Am. Chem. Soc. 96: 6023 (1974).PubMedCrossRefGoogle Scholar
  7. 7.
    A.P. Sarvazyan, in “Abstracts of the Tenth International Congress on Acoustics”, F-10,2, Sydney (1980).Google Scholar
  8. 8.
    A.G. Passinsky, J. Phys. Chem. (Rus.) 10: 606 (1938).Google Scholar
  9. 9.
    B. Jacobson, Archiv für Kemi 2 (11): 177 (1950).Google Scholar
  10. 10.
    H. Shiido, J. Am. Chem. Soc. 80: 70 (1958).CrossRefGoogle Scholar
  11. 11.
    S. Goto and T. Isemura, Bull. Chem. Soc. Japan 37 (11): 1697 (1964).CrossRefGoogle Scholar
  12. 12.
    L.W. Kessler and F. Dunn, J. Phys. Chem. 73: 4256 (1969).PubMedCrossRefGoogle Scholar
  13. 13.
    A.P. Sarvazyan, V.A. Buckin and P. Hemmes, J. Phys. Chem 84: 629 (1980).CrossRefGoogle Scholar
  14. 14.
    A.P. Sarvazyan and D.P. Kharakoz, in “Molecular and Cellular Biophysics”, Nauka, Moscow (1977), p. 93.Google Scholar
  15. 15.
    A.P. Sarvazyan and P. Hemmes, Biopolymers 18: 3015 (1979).CrossRefGoogle Scholar
  16. 16.
    V.A. Buckin, A.P. Sarvazyan and V.I. Passechnic, Biophysica (Rus.) 24: 61 (1979).Google Scholar
  17. 17.
    D.P. Kharakoz and A.P. Sarvazyan, Studia Biophyica 79: 179 (1980).Google Scholar
  18. 18.
    V.A. Buckin and A.P. Sarvazyan, Studia Biophysica 79: 77 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • A. P. Sarvazyan
    • 1
  1. 1.Institute of Biological PhysicsAcademy of Sciences of the USSRPushchino (Moscow Region)USSR

Personalised recommendations