Computer-Aided Tissue Characterization of the Human Eye

  • D. Decker
  • K. M. Irion
  • U. Faust


In the human eye the conditions for ultrasound diagnostics are very good because of the accessibility, the size and the regular structure of the organ. The detection of pathological changes in the tissue of the inner eye is even possible when the transparent parts of the eye are turbid and the common optical methods fail.


Boundary Surface Spectral Distribution Tissue Characterization Cross Correlation Method Inverse Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Decker, E. Epple, W. Leiss and M. Nagel, Digital computer analysis of time-amplitude ultrasonograms from the human eye II: Data processing, J. Clin. Ultrasound 1: 156–159 (1973).PubMedGoogle Scholar
  2. 2.
    D. Decker, H-G. Trier, M. Nagel, R. Reuter, E. Epple and R.D. Lepper, Rechnergestützte Ultraschall-Diagnostik in der Ophthalmologie, in “Medizinische Physik, Bd. 2”, W.J. Lorenz, ed., Dr. A. Wittig Verlag, Heidelberg (1976).Google Scholar
  3. 3.
    D. Decker and K. Irion, A-mode RF-signal analysis (frequency domain), in “1st EEC Workshop on In Vivo Ultrasonic Tissue Characterization” (1979) (in press).Google Scholar
  4. 4.
    D. Decker, H-G. Trier, E. Epple, R. Reuter, M. Nagel and R-D. Lepper, Computer aided tissue differentiation in ophthalmology, in “Investigative Ultrasonology”, C.R. Hill and C. Alvisi, eds., Pitman Medical (1980).Google Scholar
  5. 5.
    F.L. Lizzi, L. St. Louis and D.J. Coleman, Applications of spectral analysis in medical ultrasonography, Ultrasonics 14: 77–80 (1976).PubMedCrossRefGoogle Scholar
  6. 6.
    D. Decker and K.M. Irion, Examination of thin tissue layers, in “Fifth International Symposium on Ultrasonic Imaging and Tissue Characterization”, Gaithersburg, U.S.A. (1980) (in press).Google Scholar
  7. 7.
    D. Decker, M. Nagel and W. Blocher, Rechnergestutze Gewebsdifferenzierung mit Ultraschall, Biomedizinische Technik 23: 22 (1978).CrossRefGoogle Scholar
  8. 8.
    R. Kuc, M. Schwartz and L. Micsky, Parametric estimation of the acoustic attenuation coefficient slope for soft tissue, in “Proceedings of IEEE Ultrasonics Symposium 76 CH 1120–5 SU: 44–47” (1976).Google Scholar
  9. 9.
    D. Decker and H-G. Trier, “Rechnergestützte Gewebsdifferenzierung” project of the Arbeitsgemeinschaft Bonn/Stuttgart Diagnostic Ultrasonica in Ophthalmologia, H. Gernet, ed., R.A. Remy-Verlag, Münster (1979).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • D. Decker
    • 1
  • K. M. Irion
    • 1
  • U. Faust
    • 1
  1. 1.Institut für Biomedizinische TechnikStuttgartGerman Federal Republic

Personalised recommendations