Sampling To Assess Control of the Environment

  • International Commission on Microbiological Specifications for Foods Staff


This chapter discusses the importance of microbiological testing to assess the risk of product contamination from the environment. Preventing contamination of ready-to-eat foods is emphasized. While limited to control of pathogens, the concepts also can be applied to microbial spoilage. Routine environmental sampling most likely will be applied in certain food processing plants and less likely at other steps along the food chain.


Listeria Monocytogenes Processing Environment Yersinia Enterocolitica Codex Alimentarius Commission Product Contamination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, B. W. & Mead, G. C. (1983). Incidence and properties of Staphylococcus aureus associated with turkeys during processing and further processing operations. J Hygiene 91, 479–490.Google Scholar
  2. Anonymous (1984). Botulism risk from post-processing contamination of commercially canned foods in metal containers. J Food Prot 46, 801–816.Google Scholar
  3. Anonymous (1999). Update, multistate outbreak of listeriosis—United States, 1998–1999. Morbidity & Mortality Wkly Rpts 47, 1117–1118.Google Scholar
  4. Ash, I., McKendrick, G. D. W., Robertson, M. H. et al (1964). Outbreak of typhoid fever connected with corned beef. Br Med J (i), 1474–1478.Google Scholar
  5. Aureli, R, Fenicia, L., Gianfranceschi M. et al. (1987). Staphylococcal food poisoning caused by contaminated lasagne. Arch Lebensmittelhyg 38, 159–165.Google Scholar
  6. Autio, T., Hielm, S., Miettinen, M. et al. (1999). Sources of Listeria monocytogenes contamination in a cold- smoked rainbow trout processing plant detected by pulsed-field gel electrophoresis typing. Appl Env Microbiol 65, 150–155.Google Scholar
  7. Bagge, D., Ng, Y. Y., Hjelm, M. et al. (2001). The microflora of process equipment in three different fish processing industries. Appl Env Microbiol 67, 2319–2325.Google Scholar
  8. Banatvala, N., Magnano, A. R., Carter, M. L. et al. (1996). Meat grinders and molecular epidemiology: two supermarket outbreaks of Escherichia coli O157:H7 infection. J Infect Diseases 173, 480–483.Google Scholar
  9. Beckers, H. J., Daniels-Bosman, M. S. M., Ament, A. et al (1985). Two outbreaks of salmonellosis caused by Salmonella Indiana. A survey of the European Summit outbreak and its consequences. Int J Food Microbiol 2, 185–195.Google Scholar
  10. Bille, J. (1990). Epidemiology of human listeriosis in Europe, with special reference to the Swiss outbreak. In Foodborne Listeriosis, pp. 71–74. Edited by A. J. Miller, J. L. Smith & J. G.A. Somkuti. Amsterdam: Elsevier.Google Scholar
  11. Black, R. E., Jackson, R. J., Tsai, T. et al. (1978). Epidemic Yersinia enterocolitica infection due to contaminated chocolate milk. New Engl J Med 298, 76–79.Google Scholar
  12. Blackburn, B. O. & Ellis, E. M. (1973). Lactose-fermenting Salmonella from dried milk and milk-drying plants. Appl Microbiol 26, 672–674.Google Scholar
  13. Breuer, T. (1999). CDC investigations: The May 1998 outbreak of Salmonella agona linked to cereal. Cereal Foods World 44, 185–186.Google Scholar
  14. Bryan, F. L. (1980). Epidemiology of foodborne diseases transmitted by fish, shellfish, and marine crustaceans in the United States, 1970–1978. J Food Prot 43, 859–876.Google Scholar
  15. Bryan, F. L., Ayres, J. C. & Kraft, A. A. (1968). Contributory sources of salmonellae on turkey products. Am J Epidemiol 87, 578–591.Google Scholar
  16. CAC (Codex Alimentarius Commission) (1994). Foods for Special Dietary Uses (Including Foods for Infants and Children, Vol. 4. FAO/WHO Food Standards Programme. Rome: Codex Alimentarius Commission.Google Scholar
  17. CAC (Codex Alimentarius Commission) (1995). General Requirements (Food Hygiene), Vol. IB. FAO/WHO Food Standards Programme. Rome: Codex Alimentarius Commission.Google Scholar
  18. CAC (Codex Alimentarius Commission) (1997). Joint FAO/WHO Food Standards Programme, Codex Committee on Food Hygiene. Food Hygiene, Supplement to Volume 1B-1997. Recommended International Code of Practice, General Principles of Food Hygiene. CAC/RCP 1-1969, Rev. 3.Google Scholar
  19. Carpentier, B. & Cerf, O. (1993). Biofilms and their consequences with particular reference to hygiene in the food industry. J Appl Bacteriol 75, 499–511.Google Scholar
  20. CDC (Centers for Disease Control and Prevention) (1966). Salmonellosis associated with nonfat dried milk. MMWR Morb Mortal Wkly Rep 15, 385–386.Google Scholar
  21. CDC (Centers for Disease Control and Prevention) (1997). Outbreaks of Escherichia coli 0157:H7 infection associated with eating alfalfa sprouts—Michigan and Virginia, June-July 1997. MMWR Morb Mortal Wkly Rep 46, 741–744.Google Scholar
  22. Cherrington, C. A., Board, R. G. & Hinton, M. (1988). Persistence of Escherichia coli in a poultry processing plant. Letters Appl Microbiol 7, 141–143.Google Scholar
  23. Cordier, J. L. (1997). Das Hygienekonzept als Voraussetzung fur die erfolgreiche Selbstkontrolle. Mitt Gebiet Lebensmittelunters Hyg 88, 9–17.Google Scholar
  24. Cox, L. J., Kleiss, T., Cordier, J. L. et al. (1989). Listeria spp. in food processing, non-food and domestic envi¬ronments. Food Microbiol 6, 49–61.Google Scholar
  25. Craven, P. C., Mackel, D. C., Baine, W. B. et al. (1975). International outbreak of Salmonella eastbourne infection traced to contaminated chocolate. Lancet i, 788–793.Google Scholar
  26. Dack, G. M. (1964). Characteristics of botulism outbreaks in the United States. In Botulism, Proceedings of a Symposium, pp. 33–40. Edited by K. H. Lewis & K. Cassel. Cincinnati, OH: Robert A. Taft Sanitary Engineering Center.Google Scholar
  27. Daley, E. E, Pagotto, F. & Farber, J. M. (1995). The inhibitory properties of various sponges on Listeria spp. Letters Appl Microbiol 20, 195–198.Google Scholar
  28. Davidson, P. M., Pflug, I. J. & Smith, G.M. (1981). Microbiological analysis of food product in swelled cans of low-acid foods collected from supermarkets. J Food Prot 44, 686–691.Google Scholar
  29. De Lagarde, E. A. (1974). Boletin Informativo del Centro Panamericano de Zoonosis, Vol. 1. Buenos Aires, Argentina: Centro Panamericano de Zoonosis.Google Scholar
  30. Denny, C. B. (1982). Industry’s response to problem solving in botulism prevention. Food Technol 36, 116–118.Google Scholar
  31. Dickgiesser, N. (1978). Untersuchungen iiber das Verhalten Gram-positiver and Gram-negativer Bakterien in trockenem und feuchtem Milieu. Zbl Bakt Hyg I. Abt 167, 48–62.Google Scholar
  32. Dodd, C. E. R., Chaffey, B. J. & Waites, W. M. (1988). Plasmid profiles as indicators of the source of contamination of Staphylococcus aureus endemic within poultry processing plants. Appl Environ Microbiol 54, 1541–1549.Google Scholar
  33. EC (European Commission) (1997). Harmonization of Safety Criteria for Minimally Processed Foods. Inventory Report FAIR Concerted Action FAIR CT96-1020. Brussels: Directorate-Genial XII, Science, Research and Developement. ( Scholar
  34. ECFF (European Chilled Food Federation) (1996). Guidelines for the Hygienic Manufacture of Chilled Foods. London: Chilled Food Association.Google Scholar
  35. EHEDG (European Hygienic Equipment Design Group) (1997). EHEDG guidelines and test methods. Trends Food Sci Technol 8, 1–90.Google Scholar
  36. Ellis, A., Preston, M., Borczyk, A. et al. (1998). A community outbreak of Salmonella berta associated with a soft cheese product. Epidemiol Infect 120, 29–35.Google Scholar
  37. Ericsson, H., Ecklow, A., Danielsson-Tham M.-L. et al. (1997). An outbreak of listeriosis suspected to have been caused by rainbow trout. J Clin Microbiol 35, 2904–2907.Google Scholar
  38. Evans, H. R., Tromans, J. P., Dexter, E. L. S. et al. (1996). Consecutive Salmonella outbreaks traced to the same bakery. Epidemiol Infect 116, 161–167.Google Scholar
  39. Farber, J. M. (1996). An introduction to the hows and whys of molecular typing. J Food Prot 59, 1091–1101.Google Scholar
  40. Fendler, E. J., Dolan, M. J. & Williams, R.A. (1998a). Handwashing and gloving for food protection. Part I: Examination of the evidence. Dairy Food Environ San 18, 814–823.Google Scholar
  41. Fendler, E. J., Dolan, M. J., Williams, R. A. et al. (1998b). Handwashing and gloving for food protection. Part II. Effectiveness. Dairy Food Environ San 18, 824–829.Google Scholar
  42. Flickinger, B. (1996). Plant sanitation comes to light—an evaluation of ATP-bioluminescence systems for hygiene monitoring. Food Qual June/July, 1–15.Google Scholar
  43. Fonnesbech-Vogel, B., Jørgensen, L. V, Ojeniyi, B. et al. (2001a). Diversity of Listeria monocytogenes isolates found in cold-smoked salmon from different smokehouses assessed by randomly amplified polymorphic DNA analyses. Int J Food Microbiol 65, 83–92.Google Scholar
  44. Fonnesbech-Vogel, B., Huss, H. H., Ojeniyi, B. et al. (2001b). Elucidation of Listeria monocytogenes contamination routes in cold-smoked salmon processing plants detected by DNA-based typing methods. Appl Environ Microbiol 67, 2586–2595.Google Scholar
  45. Fredriksson-Ahomaa, A., Korte, T. & Korkeala, H. (2000). Contamination of carcasses, offals, and the environment with YADA-positive Yersinia enterocolitica in a pig slaughterhouse. J Food Prot 63, 31–35.Google Scholar
  46. Gästrin, B., Kaempe, A., Nystroem, K. G. et al. (1972). Salmonella durham epidemi spridd genom kakaopulver. Laekartidingen 69, 5335–5338.Google Scholar
  47. Gibbs, R A., Patterson, J. T. & Thompson, J. K. (1978). The distribution of Staphylococcus aureus in a poultry processing plant. J Appl Bacteriol 44, 401–410.Google Scholar
  48. Gibson, H., Taylor, J. H., Hall, K. H. et al. (1995). Biofilms and Their Detection in the Food Industry. R&D Report No. 1. Chipping Campden, Gloucestershire, UK: Campden & Chorleywood Food Research Association.Google Scholar
  49. Gill, O. N., Sockett, P. N., Bartlett, C. L. T. et al. (1983). Outbreak of Salmonella napoli infection caused by contaminated chocolate bars. Lancet i, 574–577.Google Scholar
  50. Gundermann, K. O. (1972). Untersuchungen zur Lebensdauer von Bakterienstämmen in Staub unter dem Einfluss unterschiedlicher Luftfeuchtigkeit. Zbl Bakt Hyg 1. Abt 156, 422–429.Google Scholar
  51. Gundermann, K. O. & Glück, S. (1971). Untersuchungen zur Ueberlebensdauer von Bakterien auf Oberflächen und der Möglichkeiten ihrer Beeinflussung. Arch Hyg 154, 480–487.Google Scholar
  52. Gundermann, K. O. & Johannssen, H. (1970). Untersuchungen zur Ueberlebensdauer von Bakterien auf Oberflächen und der Möglichkeiten ihrer Beeinflussung. Arch Hyg 151, 102–109.Google Scholar
  53. Hardt-English, P., York, G., Stier, R. et al. (1990). Staphylococcal food poisoning outbreaks caused by canned mushrooms from China. Food Technol 44, 74–78.Google Scholar
  54. Hennessy, T. W., Hedberg, C. W., Slutsker, L. et al. (1996). A national outbreak of Salmonella enteritidis infections from ice cream. New Engl J Med 334, 1281–1286.Google Scholar
  55. Holah, J. T., Taylor, J. H. & Holder, S. (1993). The Spread of Listeria by Cleaning Systems, Part II. Technical Memorandum No. 673. Chipping Campden, Gloucestershire, UK: Campden and Chorleywood Food Research Association.Google Scholar
  56. ICMSF (International Commission on Microbiological Specifications for Foods) (1988). Microorganisms in Foods 4. Application of the Hazard Analysis Critical Control Point (HACCP) System To Ensure Microbiological Safety and Quality. Oxford: Blackwell Scientific Publications, Ltd.Google Scholar
  57. ICMSF (International Commission on Microbiological Specifications for Foods) (1998). Microorganisms in Foods 6: Microbial Ecology of Food Commodities. Gaithersburg, MD: Aspen Publishers, Inc.Google Scholar
  58. IDF (International Dairy Federation) (1992). Hygiene management in dairy plants. Bull IDF 276, 1–68.Google Scholar
  59. IOCCC (International Organization of Cocoa, Chocolate and Confectionery) (1993). Guidelines for the Establishment of Good Hygiene Practices. Brussels: IOCCC.Google Scholar
  60. Johnston, R. W., Feldman, J. & Sullivan, R. (1963). Botulism from canned tuna fish. Publ Health Rpts 78, 561 - 564.Google Scholar
  61. Joseph, C. A., Mitchell, E. M., Cowden, J. M. et al. (1991). A national outbreak of salmonellosis from yeast flavoured products. Communic Disease Rpt, 1 Review, R16–R19.Google Scholar
  62. Kleiss, T., van Schothorst, M., Cordier, J. L. et al. (1994). Staphylococci in a whey powder plant environment: an ecological survey as a contribution to HACCP studies. Food Control 5, 196–199.Google Scholar
  63. Kopanic, R. J., Sheldon, B. W. & Wright, C. G. (1994). Cockroaches as vectors of Salmonella: laboratory and field trials. J Food Prot 57, 125–132.Google Scholar
  64. Kumar, C. G. & Anand, S. K. (1999). Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42, 9–27.Google Scholar
  65. Lake, D. E., Graves, R. R., Lesnieski, R. S. et al. (1985a). Post-processing spoilage of low-acid canned foods by mesophilic anaerobic sporeformers. J Food Prot 48, 221–226.Google Scholar
  66. Lake, D. E., Lesnieski, R. S., Graves, R. R. et al. (1985b). Enumeration and isolation of mesophilic anaerobic sporeformers from cannery post-processing equipment. J Food Prot 48, 794–798.Google Scholar
  67. Langfeldt, N., Heeschen, W. & Hahn, G. (1988). Zum Vorkommen von Salmonellen in Milchpulver: Untersuchungen zur Kontamination durch Analyse kritischer Punkte. Kieler Milchwirtschaftl Forschungsber 40, 81–90.Google Scholar
  68. Lawrence, L. M. & Gilmour, A. (1995). Characterization of Listeria monocytogenes isolated from poultry products and from the poultry-processing environment by random amplification of polymorphic DNA and mul- tilocus enzyme electrophoresis. Appl Environ Microbiol 61, 2139–2144.Google Scholar
  69. Lecos, C. (1986). Of microbes and milk: Probing America’s worst Salmonella outbreak. Dairy Food Environ San 6, 136–140.Google Scholar
  70. Lehmacker, A., Bockemühl, J. & Aleksic, S. (1995). Nationwide outbreak of human salmonellosis in Germany due to contaminated paprika and paprika-powdered potato chips. Epidemiol Infect 115, 501–511.Google Scholar
  71. Linnan, M. J., Mascola, L., Lou, X. D. et al. (1988). Epidemic listeriosis associated with Mexican style cheese. New Engl J Med 319, 823–828.Google Scholar
  72. Llewellyn, L. J., Evans, M. R. & Palmer, S. R. (1998). Use of sequential case-control studies to investigate a community Salmonella outbreak in Wales. J Epidemiol Comm Health 52, 272–276.Google Scholar
  73. Loncarevic, S., Tham, W. & Danielsson, M-L. (1996). The clones of Listeria monocytogenes detected in food depend on the method used. Lett Appl Microbiol 22, 381–384.Google Scholar
  74. Lyytikainen, O., Autio, T., Maijala, R. et al. (2000). An outbreak of Listeria monocytogenes serotype 3a infection from butter in Finland. J Infect Diseases 181, 1838–1841.Google Scholar
  75. Magwood, S. E., Rigby, C. & Fung, P. H. J. (1967). Salmonella contamination of the product and environment of selected Canadian chicken processing plants. Can J Comp Med Vet Sci 88–91.Google Scholar
  76. Marthi, B., Fieland, V P., Walter, M. V et al. (1990). Survival of bacteria during aerosolization. Appl Environ Microbiol 56, 3463–3467.Google Scholar
  77. Matsuda, N., Komaki, M., Ichikawa, R. et al. (1985). Cause of microbial spoilage of canned foods analyzed during 1968–1980. Nippon Shokuhin Kogyo Gakkaishi 32, 444–449.Google Scholar
  78. Mead, G. C. (1992). Colonization of poultry processing equipment with staphylococci, an overview. In Prevention and Control of Potentially Pathogenic Microorganisms in Poultry and Poultry Meat Processing, Proceedings 10. The Attachment of Bacteria to the Gut, pp. 29–33. Edited by A. Pusztai, M. H. Hinton & R. W. A. W. Mulder. Beekbergen, The Netherlands: DLO Spelderholt Centre for Poultry Research and Information Services.Google Scholar
  79. Mead, G. C. & Dodd, C. E. R. (1990). Incidence, origin and significance of staphylococci on processed poultry. J Appl Bacteriol Symp Suppl, 81S–91S.Google Scholar
  80. Mettler, E. & Carpentier, B. (1998). Variation over time of microbial load and physicochemical properties of floor materials after cleaning in food industry premises. J Food Prot 61, 57–65.Google Scholar
  81. Michanie, S., Bryan, F. L., Alvarez, P. et al. (1987). Critical control points for foods prepared in households in which babies had salmonellosis. Int J Food Microbiol 5, 337–354.Google Scholar
  82. Miettinen, M. K., Björkroth, K. & Korkeala, H. J. (1999). Characterization of Listeria monocytogenes from an ice cream plant by serotyping and pulsed field gel electrophoresis. Int J Food Microbiol 46, 187–192.Google Scholar
  83. Morgan, D., Newman, C. P., Hutchinson, D. N. et al. (1993). Verotoxin-producing Escherichia coli O157 infections associated with the consumption of yogurt. Epidemiol Infect 111, 181–187.Google Scholar
  84. Motarjemi, Y. & Käferstein, F. K. (1997). Global estimation of foodborne diseases. World Health Stats Quarterly 50, 5–11.Google Scholar
  85. Nesbakken, T., Kapperud, G. & Caugant, D. A. (1996). Pathways of Listeria monocytogenes contamination in the meat processing industry. Int J Food Microbiol 31, 161–171.Google Scholar
  86. Nesbakken, T., Nerbrink, E., Røtterud, O.-J. & Borch, E. (1994). Reduction of Yersinia enterocolitica and Listeria spp. on pig carcasses by enclosure of the rectum during slaughter. Int J Food Microbiol 23, 197–208.Google Scholar
  87. Norton, D. M., McCamey, M. A., Gall, K. L. et al. (2001). Molecular studies on the ecology of Listeria monocytogenes in the smoked fish processing industry and implications for control strategies. Appl Environ Microbiol 61, 198–205.Google Scholar
  88. Norwood, D. A. & Gilmour, A. (1999). Adherence of Listeria monocytogenes strains to stainless steel coupons. J Appl Microbiol 86, 576–582.Google Scholar
  89. Notermans, S., Tips, P., Rost, J. A. & van Leeuwen, W. J. (1982). Staphylococcus aureus in pluimveeslachtlijnen. Tijdschr Diergeneesk 107, 889–895.Google Scholar
  90. Olive, D. M. & Bean, P. (1999). Principles and applications of methods for DNA-based typing of microbial organisms. J Clin Microbiol 37, 1661–1669.Google Scholar
  91. Olsen, A. R. & Hammack, T. S. (2000). Isolation of Salmonella spp. from the housefly, Musca domestica L., and the damp fly, Hydrotea aenescens, at caged layer houses. J Food Prot 63, 958–960.Google Scholar
  92. O’Mahoney, M., Mitchell, E., Gilbert, R. J. et al. (1990). An outbreak of foodborne boltulism associated with contaminated hazelnut yogurt. Epidemiol Infect 104, 389–395.Google Scholar
  93. Patrick, M. & Bayliss, C. L. (1997). Evaluation of the Konica Swab & Check. Technical Notes No. 123. Leatherhead, Surrey, UK: Leatherhead Food Research Association.Google Scholar
  94. Pirttijärvi, T. S. M., Ahonen, L. M., Mannuksela, L. M. et al. (1998). Bacillus cereus in a whey process. Int J Food Microbiol, 44, 31–41.Google Scholar
  95. Ray, B., Jezeski, J. J. & Busta, F. F. (1971). Isolation of salmonellae from naturally contaminated dried milk products. J Milk Food Technol 34, 389–393.Google Scholar
  96. Rowe, B., Hutchinson, D. N., Gilbert, R. J. et al. (1987). Salmonella ealing infections associated with consumption of infant dried milk. Lancet i, 900–903.Google Scholar
  97. Salvat, G., Toquin, M. T., Michel, Y. & Colin, R (1995). Control of Listeria monocytogenes in the delicatessen industries: the lessons of a listeriosis outbreak in France. Int J Food Microbiol 25, 75–81.Google Scholar
  98. Segner, W. R (1979). Mesophilic aerobic sporeforming bacteria in the spoilage of low-acid canned foods. Food Technol 33, 55–59, 80.Google Scholar
  99. Silliker, J. H. & Gabis, D. A. (1975). A cellulose sponge sampling technique for surfaces. J Milk Food Technol 38, 504.Google Scholar
  100. Stersky, A., Todd, E. & Pivnick, H. (1980). Food poisoning associated with post-process leakage (PPL) in canned foods. J Food Prot 43, 465–476.Google Scholar
  101. Steuer, W. (1992). Hygienische Probleme bei der Teigwarenherstellung. Mitt Gebiet Lebensmittelunters Hyg 83, 151–157.Google Scholar
  102. Taylor, J. H. & Holah, T. (1996). A comparative evaluation with respect to the bacterial cleanability of a range of wall and floor surface materials used in the food industry. J Appl Bacteriol 81, 262–266.Google Scholar
  103. Todd, E., Szabo, R., Robern, H. et al. (1981). Variation in counts, enterotoxin levels and TNase in Swiss-type cheese contaminated with Staphylococcus aureus. J Food Prot 44, 839–848.Google Scholar
  104. Tompkin, R. B., Scott, V N., Bernard, D. T. et al. (1999). Guidelines to prevent post-processing contamination from Listeria monocytogenes. Dairy Food Environ San 19, 551–562.Google Scholar
  105. Unnerstad, H., Bannerman, E., Bille, J. et al. (1996). Prolonged contamination of a dairy with Listeria monocytogenes. Neth Milk Dairy J 50, 493–499.Google Scholar
  106. Upton, P. & Coia, J. E. (1994). Outbreak of Escherichia coli 0157 infection associated with pasteurised milk supply. Lancet 334, 1015.Google Scholar
  107. Urban, J. E. & Broce, A. (2000). Killing of flies in electrocuting insects traps releases bacteria and viruses. Current Microbiol 41, 267–270.Google Scholar
  108. Walter, M. V, Marthi, B., Fieland, V et al. (1990). Effect of aerosolization on subsequent bacterial survival. Appl Env Microbiol 56, 3468–3472.Google Scholar
  109. Wimpenny, J. (1995). Biofilms: Structure and organisation. Microbiol Ecol Health Dis 8, 305–308.Google Scholar
  110. Woolaway, M. C., Bartlett, C. L. R., Weneke, A. A. et al. (1986). International outbreak of staphylococcal food poisoning caused by contaminated lasagne. J Hyg 46, 67–73.Google Scholar
  111. Zehren, V L. & Zehren, V F. (1968). Relation of acid development during cheesemaking to development of staphylococcal enterotoxin A. J Dairy Sci 51, 645–649.Google Scholar
  112. Zwietering, M. H. & Hasting, A. P. M. (1997a). Modelling the hygienic processing of foods—a global process overview. Food and Bioproducts Processing 75 (C3), 159–167.Google Scholar
  113. Zwietering, M. H. & Hasting, A. P. M. (1997b). Modelling the hygienic processing of foods—influence of individual process stages. Food and Bioproducts Processing 75 (C3), 168–173.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2002

Authors and Affiliations

  • International Commission on Microbiological Specifications for Foods Staff

There are no affiliations available

Personalised recommendations