Advertisement

Modelling for The Carburization of The Alloy - 800 in Liquid Sodium

  • Andrea Saltelli
  • Sergio Casadio

Abstract

The interstitial carbon transfer is one of the most important phenomena concerning the compatibility of metals and alloys with high temperature liquid sodium. In previous comunications we reported some methods to evaluate the extent of the carburization (or decarburization) expected to occur on austenitic steels exposed in a given sodium environment (1, 2). The calculations were essentially based on the criteria developed by Snyder, Natesan and Kassner (3) for the AISI 304 and 316 steels, but some simplifications and minor modifications were introduced to take into account the empirical model performed by Shrock, Shiels and Bagnall (4, 1) and of the coupling of the interstitial carbon diffusion with the selective leaching of the Cr and Ni substitutional alloying elements acting on the same time at the surface of the materials exposed in the hotter zone of the sodium loops (2).

Keywords

Carbon Concentration Steam Generator Austenitic Steel Carbide Precipitation Inter Granular Corrosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Casadio, G. Scibona; Specialists’ Meeting on Carbon in Sodium, Harwell, U.K., 27-30 Nov. 1979, IAEA- IWGFR/33.Google Scholar
  2. 2.
    S. Casadio, A. Saltelli, G. Scibona; Second Int.Conf.on Liquid Metal Technology in Energy Production, Richland, USA, 20–24 April 1980.Google Scholar
  3. 3.
    B. Snyder, K. Natesan, T. F. Kassner; ANL-8015 (June 1973).Google Scholar
  4. 4.
    S. L. Schrock, S. A. Shiels, C. Bagnall; First Int.Conf. 011 Liquid Metal Technology in Energy Production, Champion, USA, 3–6 May 1976.Google Scholar
  5. 5.
    F. V. Nolfi Jr., P. G. Shewmon, J. S. Foster; Trans.Met. Soc. of AIME, 245, 1427 (1969).Google Scholar
  6. 6.
    R. L. Cowan II, C. S. Tedmon Jr.; Adv.Corr.Sci.and Techn., vol. 3,p. 317 (1973).Google Scholar
  7. 7.
    C. Stawtrom, M. Hillert; J. of Iron and Steel Inst., Jan. 1969, p. 77.Google Scholar
  8. 8.
    A. Borello, S. Casadio, A. Saltelli, G. Scibona; accepted for publication on Corrosion NACE, 1980.Google Scholar
  9. 9.
    B. Weiss, R. Stickler; Met.Trans., 3, 851 (1972).CrossRefGoogle Scholar
  10. 10.
    L. K. ainghal, J. W. Martin; Acta Met., 16, 1159 (1968).CrossRefGoogle Scholar
  11. 11.
    A. Schnaas, H. J. Grable; Oxid.Met., 12, 387 (1978).CrossRefGoogle Scholar
  12. 12.
    J. Blanchet, H. Coriou; “Alloy-800”, North-Holland Pub. Comp., 1978, p. 241.Google Scholar
  13. 13.
    M. Julien; Nucl.Techn., 31, 367 (1976).Google Scholar
  14. 14.
    M. R. Hobdell et al.; Chemical and Technological aspects of carbon in liquid sodium, Int.Conf.of Ref.2.Google Scholar
  15. 15.
    J. Crank; The Mathematics of Diffusion, Oxford Univ.Press (1970).Google Scholar
  16. 16.
    C. C. Miles; Anal.Chem., 41, 1041 (1969).CrossRefGoogle Scholar
  17. 17.
    J. J. McCown, C. Bagnall; HEDL-SA-1950-FP (1979).Google Scholar
  18. 18.
    J. J. Goldstein, A. E. Moren; Met.Trans.A, 9A, 1515 (1978).CrossRefGoogle Scholar
  19. 19.
    S. Casadio, G. Bruni, G. D’Alessandro, C. Meloni; Carburization Kinetics of Alloy-800 in liquid sodium at 550 °C, this Meeting on the “Material Behaviour and Physical Chem…”, 24–26 March 1981, Karlsruhe, DFR.Google Scholar
  20. 20.
    GEAP-13919-3, March 1973, Third Quartely Report on LMFBR Heat Exchanger aterials Dev. Progr.Google Scholar
  21. 21.
    V. Z. Bugakov; Diffusion in metals and alloy, Israel Progr. for Sci. Trans., 1971.Google Scholar
  22. 22.
    A. Saltelli, S. Casadio; CNEN-RT/CHI (80)13.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Andrea Saltelli
    • 1
  • Sergio Casadio
    • 1
  1. 1.CNEN-CSN-CASACCIARomeItaly

Personalised recommendations