Some Observations on The Carburisation of Type 316 Stainless Steel Foil in A Low Carbon Activity Sodium Environment

  • Alan W. Thorley
  • Peter J. Jeffcoat


This paper describes work currently being undertaken at the Risley Nuclear Laboratories (RNL) to establish the equilibrium composition of carbides which form in stainless steel foils during their exposure to a low carbon activity sodium environment. The experiment is the first in a series which aim to study the equilibrium compositions of carbides which form in stainless steel foils and the time it takes the carbon to reach equilibrium during exposure to sodium of different carbon activity. The first part of the study, which is reported in this paper, deals with the lowest carbon activity measureable in our test loops where the sodium is just about carburising to stainless steel. Analytical techniques are used to determine the composition of the carbide and the austenite matrix and hence to estimate the carbon activity of the equilibrium structure. This provides a comparison with carbon activity values determined by alternative methods such as the Harwell Carbon Meter (HCM) and nickel tab techniques.


Carbon Activity Metallurgical Transaction Carbide Particle Carbide Phase Lave Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Natesan and T. F. Kassner: Nuclear Technology, Vol. 19, 1973, pp. 46–56.Google Scholar
  2. 2.
    A. W. Thorley and C. Tyzack: Liquid Alkali Metals. Proc. Nottingham, 1973, pp. 257–272.Google Scholar
  3. 3.
    R. C. Asher et al: AERE R8020, HMS0 1977.Google Scholar
  4. 4.
    J. S. Hislop et al: AERE R8182, HMS0 1975.Google Scholar
  5. 5.
    K. Natesan and T. F. Kassner: Metallurgical Transactions, Vol. 4, 1973, pp. 2557–2566.CrossRefGoogle Scholar
  6. 6.
    J. C. Swartz: Metallurgical Transactions, Vol. 2, 1971, pp. 2318–2319.CrossRefGoogle Scholar
  7. 7.
    C. J. Smithells: Metals Reference Book, 5th Edition, Butterworths, London, 1976.Google Scholar
  8. 8.
    G. Cliff and G. W. Lorimer: Journal of Microscopy, Vol. 103, 1975.Google Scholar
  9. 9.
    H. Tuma et al: Archiv für das Eisenhiittenwesen, Vol. 40, 1969, pp. 727–731.Google Scholar
  10. 10.
    A. W. Thorley and M. R. Hobdell: IAEA Specialists Meeting, Carbon in Sodium, Harwell, 1979.Google Scholar
  11. 11.
    I. Ansara and M. H. Rand: in The Industrial Use of Thermo-Chemical Data. Ed.Barry T I, Special Publication No. 34, Chemical Society, London, 1980.Google Scholar
  12. 12.
    V. I. Alekseev and L. A. Shvartsman: Russian Metallurgy, Pt. 1, 1965, pp. 117–119.Google Scholar
  13. 13.
    R. Benz et al: Metallurgical Transactions, Vol. 5, 1974, pp. 2235–2240.CrossRefGoogle Scholar
  14. 14.
    F. N. Mazandarany and R. D. Pehlke: Metallurgical Transactions, Vol. 4, 1973, pp. 2067–2076.CrossRefGoogle Scholar
  15. 15.
    J. Chipman: Metallurgical Transactions, Vol. 5, 1974, p. 521.CrossRefGoogle Scholar
  16. 16.
    W. Slough et al: Journal of Chemical Thermodynamics, Vol. 2, 1970, pp. 117–124.CrossRefGoogle Scholar
  17. 17.
    M. H. Rand: Private Communication, 1981.Google Scholar
  18. 18.
    J. K. L. Lai and M. Meshkat: Metal Science, Sept. 1978, pp. 415–420.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Alan W. Thorley
    • 1
  • Peter J. Jeffcoat
    • 1
  1. 1.United Kingdom Atomic Energy AuthorityRisleyUK

Personalised recommendations