Chemical Reactions in Liquid Sodium and Liquid Lithium

  • Richard J. Pulham


Lithium shows some significant differences from Na in its solvent properties and also in the chemical reactions which occur between dissolved solutes in the liquid metal. The elements N, H, C, Si and Ge are more soluble in lithium (N and H form eutectics) and the compounds which crystallize are more stable than their Na counterparts. Thus for compounds M = Li, Na, −ΔG298 values (kJ mol −1) are M2O 561.4 (1), 378.7 (1) or 375.6 (2); M3.N 128.6 (3), (87) (4); MH 70.1 (5), 38 (6); and M2C2 (56) (7), −21.0 (8). Values in parenthese are estimates and the present work gives ΔG873 Li2C2 = −89 kJ mol−1. The corresponding solubilities (appm non-metal) at 500 °C are M2O 800 (9), 1696 (10), M3N 34200 (11), <10−4 (12); MH 34400 (11)2, 8273 (13); and M2C2 210 (14), 1 (15). Consequently Li forms a more stable nitride which is soluble and reactive towards both non-metals and transition metals Li5TiN3 (16), Li2ZrN2 (17), Li7MN4, (M = V, Nb, Ta) (18), Li9MN5 (M = Cr, Mo, W) (19) and Li3FeN2 (20) are known and Li converts LiOH entirely to Li2O and LiH thereby virtually removing the equilibrium between OH, O2− and H- which exists in Na (21). The present work describes some reactions of C in Na and Li.


Liquid Metal Liquid Sodium Liquid Lithium JANAF Thermochemical Table United Kingdom Introduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    JANAF Thermoehemical Tables, Second edn. NSRDS-NBS 37 1971.Google Scholar
  2. 2.
    D. R. Frederickson and M. G. Chasonov, J. Chem. Thermodynamics 1973, 5, 485.CrossRefGoogle Scholar
  3. 3.
    D. W. Osborne and H. E. Flotow, J. Chem. Thermodynamics, 1978, 10, 675.CrossRefGoogle Scholar
  4. 4.
    G. J. Moody and J. D. R. Thomas, J. Chem. Educ. 1966, 43, 205.CrossRefGoogle Scholar
  5. 5.
    H. R. Ihle and C. H. Wu, J. Inorg. Nuclear Chem. 1974, 36, 2167.Google Scholar
  6. 6.
    W. M. Latimer, “The Oxidation States of the Elements and their Potentials in Aqueous Solution”. Prentice Hall, 2nd Ed. 1952.Google Scholar
  7. 7.
    JANAF Thermochemical Tables, 1974 Supplement.Google Scholar
  8. 8.
    G. K. Johnson, E. H. Van Deventer, J. P. Ackerman, W. N. Hubbard, D. Osborne and H. E. Flotow, J. Chem. Thermodynamics, 1973, 5, 57.CrossRefGoogle Scholar
  9. 9.
    R. M. Yonco, V. A. Maroni, J. E. Strain and J. D. DeVan, J. Nucl. Mater, 1979, 79, 354.CrossRefGoogle Scholar
  10. 10.
    J. D. Noden, J. Brit. Nucl. Soc. 1973, 12, 57.Google Scholar
  11. 11.
    P. F. Adams, M. G. Down, P. Hubberstey and R. J. Pulham, J. Less-Common Metals, 1975, 42, 325.CrossRefGoogle Scholar
  12. 12.
    E. Veleckis, K. E. Anderson, F. A. Cafasso and H. M. Feder, Proc. Internat. Conf. Sodium Technol. and Fast Reactor Design, ANL-7520, Part I, 295, 1968.Google Scholar
  13. 13.
    A. C. Whittingham, J. Nucl. Mater. 1976, 60, 119.CrossRefGoogle Scholar
  14. 14.
    R. M. Yonco and M. I. Homa, Trans. Amer. Nucl. Soc. 1979, 32, 270.Google Scholar
  15. 15.
    R. Ainsley, A. P. Hartlib, P. M. Holroyd and G. Long, J. Nucl. Mater. 1974, 52, 255.CrossRefGoogle Scholar
  16. 16.
    R. Juza, H. H. Weber and E. Meyer-Simon, Z. anorg.allgem. Chem. 1953, 273, 48.CrossRefGoogle Scholar
  17. 17.
    A. P. Palisaar and R. Juza, Z. anorg. allgem. Chem. 1971, 384, 1.CrossRefGoogle Scholar
  18. 18.
    R. Juza, W. Gieren and J. Haug, Z. anorg. allgem. Chem. 1959, 300, 61.CrossRefGoogle Scholar
  19. 19.
    R. Juza, W. Gieren and J. Haug, Z. anorg. allgem. Chem. 1961, 309, 276.CrossRefGoogle Scholar
  20. 20.
    M. Fromont, Rev. Chim. Minerale, 1967, 4, 447.Google Scholar
  21. 21.
    R. J. Pulham and F. A. Simm, Proc. Internat. Conf. Liquid Alkali-Metals, April 4–6, Nottingham University, BNES London 1973, p 1.Google Scholar
  22. 22.
    C. C. Addison, B. M. Davies, R. J. Pulham and D. P. Wallace, The Alkali-Metals, Special Publn. No. 22, The Chemical Society, London 1967.Google Scholar
  23. 23.
    M. G. Down, M. J. Haley, P. Hubberstey, R. J. Pulham and Anne E. Thunder, J.C.S. Dalton, 1978, 1407.Google Scholar
  24. 24.
    R. J. Pulham, P. Hubberstey, Anne E. Thunder, A. Harper and A. T. Dadd, Second Internat. Conf. Liquid Metal Technol. Energy Production, April 20–24, Richland, Wa. ANS 1980.Google Scholar
  25. 25.
    H. Migge, Second Internat. Conf. Liquid Metal Technol. Energy Production, April 20–24, Richland, Wa. ANS 1980.Google Scholar
  26. 26.
    M. G. Down and R. J. Pulham, J. Crystal Growth, 1979, 47, 133.CrossRefGoogle Scholar
  27. 27.
    C. C. Addison, R. J. Pulham and E. A. Trevillion, J.C.S. Dalton, 1975, 2082.Google Scholar
  28. 28.
    C. C. Addison, G. K. Creffield, P. Hubberstey and R.J. Pulham, J.C.S. Dalton, 1976, 1105.Google Scholar
  29. 29.
    M. R. Hobdell and J. R. Gwyther, J. Appl. Electrochem 1975, 5, 263.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Richard J. Pulham
    • 1
  1. 1.University of NottinghamUK

Personalised recommendations