Mixing and Circulation Under Pressure

  • Daniil S. Tsiklis


One of the oldest and least-perfected methods of mixing, used less and less, is the introduction of a stirrer into high-pressure apparatus with its shaft passing through a gland and being rotated by a motor. Such stirrers have a number of deficiencies. The presence of a gland limits the pressure difference which can be used, and creates a danger of leakage and of contamination of the contents of the apparatus by the lubricant of the gland and the packing material. The tighter the gland is held, the greater is the friction on the stirrer shaft. This creates the danger of overheating of the shaft, and considerably increases the motor power required to rotate the stirrer. Thus, at a pressure of 200–400 atm, rotation of a laboratory stirrer at 120 rpm requires a 0.25 kw motor.


Tractive Force Motor Power Current Interruption Circulation Pump Coil Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Flom, D. G., and Porill, N. T., J. Appl. Phys., 26 (9): 1088 (1955).CrossRefGoogle Scholar
  2. 2.
    Kiebler, M. W., Ind. Eng. Chem., 37 (6): 540 (1945).CrossRefGoogle Scholar
  3. 3.
    Björkman, A., Ind. Eng. Chem., 44: 2359 (1952).CrossRefGoogle Scholar
  4. 4.
    Payne, I. W., Sreed, C. W., and Kent, E. R., Ind. Eng. Chem., 50 (1): 47 (1958)CrossRefGoogle Scholar
  5. 5.
    Bruns, B. P., and Braude, G. E., Tr. Gos. Inst. Azo. Prom., No. 1, Goskhimizdat, 1953, p. 252.Google Scholar
  6. 6.
    Tsiklis, D. S., Dokl. Akad. Nauk SSSR, 86: 993 (1952).Google Scholar
  7. 7.
    Kuchler, Jahrbuch der AEG Forschung, June, 1939.Google Scholar
  8. 8.
    Roters, Electromagnetic Mechanisms, GÉI, 1949.Google Scholar
  9. 9.
    Katsnel’son, O. G., Chemistry and Technology of Nitrogen Fertilizers, Works of the State Institute of the Nitrogen Industry, Tr. GIAP, No. 12, Goskhimizdat, 1961, p. 323.Google Scholar
  10. 10.
    Semendyaev, K. A., et al., Five Place Mathematical Tables, Izd., second edition, 1959.Google Scholar
  11. 11.
    Tsiklis, D. S., and Maslennikova, V. Ya., Dokl. Akad. Nauk SSSR, 157: 427 (1964).Google Scholar
  12. 12.
    Sage, B., and Lacey, W., Trans. Am. Inst. Min. Met. Eng., Petr. Div., 136 (1940).Google Scholar
  13. 13.
    Bishnevskii, N. E., Zh. Khim. Prom., 2 (102): 38 (1956).Google Scholar
  14. 14.
    Tsiklis, D. S., Zavodsk. Lab., 13: 242 (1947).Google Scholar
  15. 15.
    Gonikberg, M. G., Fastovskii, V. G., and Gurvich, I. G., Zh. Fiz. Khim., 13: 1669 (1939).Google Scholar
  16. 16.
    Aristov, G. E., and Sidorov, I. P., Tr. Gos. Inst. Azo. Prom., No. 1, Goskhimizdat, 1953, p. 258.Google Scholar
  17. 17.
    Beck, R., Ranbo, M., Sensil, E., and Higrave, P., Ind. Eng. Chem., 42: 144 (1950).CrossRefGoogle Scholar
  18. 18.
    Sirota, A. M., and Mal’tsev, B. K., Inzh. Fiz. Zh., 2 (1): 93 (1959).Google Scholar
  19. 19.
    Kricheskii, I. R., and Efremova, G. D., Zh. Fiz. Khim., 22: 116 (1949).Google Scholar
  20. 20.
    Katsnel’son, O. G., Bruns, B. P., and Gamburg, D. Yu., Zavodsk. Lab., 12: 379 (1946).Google Scholar

Copyright information

© Plenum Press 1968

Authors and Affiliations

  • Daniil S. Tsiklis

There are no affiliations available

Personalised recommendations