Advertisement

Abstract

Pressure is force applied to a unit of area. The most widely used pressure unit is the atmosphere (normal [standard] or physical atmosphere), equal to the pressure of a column of mercury 760 mm high on an area of 1 cm2 with mercury density 13.5951 g/cm3 (at 0°C) and an acceleration of gravity equal to 980.665 cm/sec2. The weight of such a mercury column is 1.033 kg. Thus, a normal atmosphere (n. atm.) corresponds to 1.033 kg/cm2.

Keywords

Effective Area Bevel Gear Electrical Lead Mercury Manometer Mercury Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Mendeleev, D. I., Zh. Russ. Fiz. Khim. Obshchestva, 4: 309 (1872).Google Scholar
  2. 2.
    Jellinek, K., Lehrbuch der physikalische Chemie, Vol. 1, Berlin (1928).Google Scholar
  3. 3.
    Handbuch der experimental Physik, 8:2 (1929).Google Scholar
  4. 4.
    Tiller, F. M., Anal. Chem., 26: 1252 (1929).CrossRefGoogle Scholar
  5. 5.
    Roebuck, I. R., and Ibser, H. W., Rev. Sci. Instrum., 25: 46 (1954).CrossRefGoogle Scholar
  6. 6.
    Zhokhovskii, M, K., Techniques for Measurement of Pressures and Rarefactions, Mashgiz, 1952; ASME Publications, High Pressure Measurements, Bibliography on Bourdon Tubes and Bourdon Gages, Paper N53-YKD-1, 1953.Google Scholar
  7. 7.
    Zhokhovskii, M. K., Theory and Design of Instruments with Unsealed Pistons, Mashgiz, 1959.Google Scholar
  8. 8.
    Voronel’, A. V., Fiz. Metal, i Metalloved., 9: 174 (1960).Google Scholar
  9. 9.
    Bett, K., Hayes, P. F., and Newitt, D. M., Phil. Trans. Roy. Soc., London, Ser. A., 247 (923): 59 (1954).CrossRefGoogle Scholar
  10. 10.
    Dadson, R. S., Nature, 176 (4474): 189 (1955).CrossRefGoogle Scholar
  11. 11.
    Butterman, H. I., and Schuster, M., Z. Angew. Phys., 9 (1): 29 (1957).Google Scholar
  12. 12.
    Amagat, E. H., Ann. Chim. Phys., 29: 68 (1893).Google Scholar
  13. 13.
    Vereshchagin, L. F., and Aleksandrov, B. S., Zh. Tekhn. Fiz., 9: 348 (1939).Google Scholar
  14. 14.
    Jonson, D. P., and Newhall, D. H., Trans. ASME, 75: 301 (1953).Google Scholar
  15. 15.
    Zhokhovskii, M. K., Izmerit. Tekhn., 8: 14 (1959).Google Scholar
  16. 16.
    Zhokhovskii, M. K., Izmerit. Tekhn., 2:1 (1940); 5: 1 (1940).Google Scholar
  17. 17.
    Sage, B. N., and Lacey, R., Trans. Am. Inst. Min. Met. Eng. Pert. Div., 136 (1940).Google Scholar
  18. 18.
    Reamer, H. H., and Sage, B. H., Rev. Sci. Instrum., 26: 592 (1955).CrossRefGoogle Scholar
  19. 19.
    Razumikhin, V. N., and Borzov, V. A., Tr.Inst.Kom. Standartov Mer i Izmerit. Prib. SSSR, 46 (106): 55 (1960).Google Scholar
  20. 20.
    Comings, E. W., High Pressure Technology, New York, 1960.Google Scholar
  21. 21.
    Zhokhovskii, M. K., Konyaev, Yu. S., and Levchenko, V. G., Pribory i Tekhn. Éksperim., 3: 118 (1959).Google Scholar
  22. 22.
    Konyaev, Yu. S., Pribory i Tekhn. Éksperim., 4: 107 (1963).Google Scholar
  23. 23.
    Indrik, P. V., Vestn. Mashinostr., 33 (7): 74 (1953).Google Scholar
  24. 24.
    Tsiklis, D. S., Pribory i Tekhn. Éksperim., 2: 142 (1961).Google Scholar
  25. 25.
    Coffin, D. O., Rev. Sci. Instrum., 29 (10): 896 (1958).CrossRefGoogle Scholar
  26. 26.
    Nogatkin, A. G., Priborostroenie, 5: 13 (1956).Google Scholar
  27. 27.
    Gielessen, J., Z. Angew. Phys., 8 (4): 193 (1956).Google Scholar
  28. 28.
    Metallurgia, 52:44 (1955).Google Scholar
  29. 29.
    Tait, P.G., Report of the voyage of H.M.S. Challenger, II, App. A (1881).Google Scholar
  30. 30.
    Michels, A., Aim. Physik, 72: 285 (1923);Google Scholar
  31. Michels, A., Aim. Physik, 73: 377 (1924).Google Scholar
  32. 31.
    Bridgman, P. V., High Pressure Physics, ONTI, 1935.Google Scholar
  33. 32.
    Schultze, A., Chemiker. Ztg., 67: 228 (1943).Google Scholar
  34. 33.
    Bomberg, H.I., Rev. Sci. Instrum., 30 (1): 43 (1959).CrossRefGoogle Scholar
  35. 34.
    Zolotykh, E. V., and Burova, L. L., Tr. Inst. Korn. Standardtov, Mer i Izmerit. Prib. SSSR, 46 (106): 62 (1960).Google Scholar
  36. 35.
    Adams, L. H., Goranson, R. W., and Gibson, R. F., Rec. Sci. Instrum., 8: 230 (1937).CrossRefGoogle Scholar
  37. 36.
    Darling, H. E., and Newhall, D. H., Trans. ASME, 75: 311 (1953).Google Scholar
  38. 37.
    Weir, C. E., J. Res., 45: 468 (1950).Google Scholar
  39. 38.
    Merret, F., and Norrish, R., Proc.. Roy. Soc., A206, 309 (1951).CrossRefGoogle Scholar
  40. 39.
    Warschauer, D. M., and Paul, W., Rev. Sci. Instrum., 29 (8): 675 (1958).CrossRefGoogle Scholar
  41. 40.
    Zhokhovskii, M. K., and Razumikhin, V. N., Tr. Inst. Korn. Standartov Mer i Izmert. Prib. SSSR, 46 (106): 68 (1960).Google Scholar
  42. 41.
    Zolotykh, E. V., and Burova, L. L., Izmerit. Tekhn, No. 1 (1959).Google Scholar
  43. 42.
    Tsiklis, D. S., Zh. Tekhn. Fiz., 15: 960 (1945).Google Scholar
  44. 43.
    Lloyd, E. K., and Johnson, L. P., Static and Dynamic Calibration of Instruments for Measurement of Pressure at the National Bureau of Standards, Izd. Akad. Nauk SSSR, 1960.Google Scholar
  45. 44.
    Kennedy, G. G., and La Mory, P. N., in Collection: “Progress in Very High Pressure Research,” Proc. of Confer. at Lake George in 1960, New York, 1961;Google Scholar
  46. La Mory, P. N., Am. Soc. Mech. Engs., N. WA-340, 1962.Google Scholar
  47. 45.
    Hall, H. T., J. Phys. Chem., 59: 1144 (1955).CrossRefGoogle Scholar
  48. 46.
    Dricamer, H. G., and Balchan, A. S., in Collection: Modern Very High Pressure Techniques, London, 1962.Google Scholar
  49. 47.
    Ashcroft, K., and Lees, I., Nature, 198 (4884): 957 (1963);CrossRefGoogle Scholar
  50. Myers, M. B., Dachille, F., and Roy, R., Rev. Sci. Instrum., 34 (4): 401 (1963).CrossRefGoogle Scholar
  51. 48.
    Zhokhovskii, M. K., Izmerit. Tekhn., 2: 3 (1957).Google Scholar
  52. 49.
    Zhokhovskii, M. K., Zh. Fiz. Khim., 37: 2635 (1963);Google Scholar
  53. Izmerit. Tekhn., 7: 11 (1959).Google Scholar
  54. 50.
    Zhokhovskii, M. K., Zh. Fiz. Khim., 38: 33 (1964).Google Scholar
  55. 51.
    Zhokhovskii, M. K., Izmerit. Tekhn., 4: 29 (1964).Google Scholar
  56. 52.
    Simon, F., Trans. Faraday Soc., 33: 65 (1937).CrossRefGoogle Scholar
  57. 53.
    Aleksandrov, B. S., and Vereshchagin, L. F., Zh. Tekhn. Fiz., 13: 843 (1939).Google Scholar
  58. 54.
    Alekseev, K. A., and Burova, L. L., Tr. Inst. Kom. Standartov Mer i Izmerit. Prib. SSSR, 75 (135): 36 (1964).Google Scholar
  59. 55.
    Alekseev, K. A., Tr. Inst. Kom. Standartov Mer i Izmerit. Prib. SSST, 75 (135): 44 (1964).Google Scholar
  60. 56.
    Tsiklis, D. S., and Borodina, M. D., Pribory i Tekhn. Éksperim., 2: 200 (1965).Google Scholar
  61. 57.
    Bridgman, P. W., Investigation of High Plastic Deformations and Rupture [in Russian], Izdatinlit, 1955.Google Scholar
  62. 58.
    Gross, M., Mech, M. J., and Lane, P. H., J. Sci. Instrum., 30: 1 (1953).CrossRefGoogle Scholar
  63. 59.
    Zelyaev, A. F., Shumov, K. M., and Alekseev, E. N., Zay. Lab., 22: 1368 (1958).Google Scholar
  64. 60.
    Leonidov, G. G., and Polandov, I. N., Pribory i Tekhn. Éksperim., 2: 159 (1960).Google Scholar
  65. 61.
    Newhall, D. H., and Abbot, L. H., Chem. Eng. Progr., 56 (3): 112 (1960).Google Scholar
  66. 62.
    Newitt, D. M., The Design of High Pressure Plant, London, 1940.Google Scholar
  67. 63.
    Aarons, A. B., and Cole, R. H., Rev. Sci. Instrum., 21: 31 (1950).CrossRefGoogle Scholar
  68. 64.
    Jolly, Legallis, and Cherry, J. Appl. Phys., 18: 613 (1947).Google Scholar
  69. 65.
    Higgs, P. M., Rev. Sci. Instrum., 20: 23 (1949).CrossRefGoogle Scholar
  70. 66.
    Thomson, M., and Consins, E., Instruments, 20: 330 (1947).Google Scholar
  71. 67.
    Willey, B., J. Sci. Instrum., 23: 264 (1946).CrossRefGoogle Scholar
  72. 68.
    Montgomery, L. H., and Ward, J. W., J. Sci. Instrum., 18: 289 (1947).CrossRefGoogle Scholar
  73. 69.
    Diment, J., Carson, I. A., and Charters, A. C., Rev. Sci. Instrum., 26: 879 (1955).CrossRefGoogle Scholar
  74. 70.
    Bush, W., and Barcas, W., Rev. Sci. Instrum., 19: 678 (1948).CrossRefGoogle Scholar
  75. 71.
    Kedi, U., Piezoelectricity and Its Practical Techniques, Izdatinlit, 1946.Google Scholar
  76. 72.
    Ryabinin, Yu. N., Zh. Éksperim. i Teor. Fiz., 23: 461 (1952).Google Scholar
  77. 73.
    Bol’shakov, P. E., Tr. GIAP, No. 1, Goskhimizdat, 1953, p. 30.Google Scholar
  78. 74.
    Aristov, G. E., Zh. Khim. Prom., 16: 45 (1939).Google Scholar
  79. 75.
    Shelaputin, K. N., and Voitovich, M. V., Tochnaya Industriya, 11: 7 (1940).Google Scholar
  80. 76.
    Kiselev, D. V., Byull. Inf. Nauchn. Tekhn. Byuro NIIlaborpribor, 3: 33 (1953).Google Scholar
  81. 77.
    Gamburg, D. Yu., Zh. Fiz. Khim., 24: 272 (1950).Google Scholar
  82. 78.
    Brennstoff-Chem., 37(12):9 (1956).Google Scholar
  83. 79.
    Reamer, H. H., and Sage, B. H., Rev. Sci. Instrum., 31 (3): 337 (1961).CrossRefGoogle Scholar
  84. 80.
    Zhokhovskii, M. K., and Bakhvalova, V. V., Tr. Inst. Korn. Standartov Mer i Izmerit. Prib. SSSR, 3: 12 (1960).Google Scholar

Copyright information

© Plenum Press 1968

Authors and Affiliations

  • Daniil S. Tsiklis

There are no affiliations available

Personalised recommendations