Design and Construction of High- and Ultrahigh-Pressure Apparatus

  • Daniil S. Tsiklis


Stresses, are present in a material under load, causing deformation. The design of apparatus operating at low pressures entails primarily determining wall thicknesses sufficient for the apparatus to withstand the load to be applied without permanent deformation. For equipment working at very high pressures, plastic deformation is included in calculation of wall thicknesses. The occurrence of this type of deformation is utilized in construction, as will be shown below.


Internal Pressure Axial Force Equivalent Stress Support Pressure Radial Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nadal,A., Plasticity (translated from English), Otdel. Nauchn. Tekhn. Inst., 1936.Google Scholar
  2. 2.
    Gulyaev, A. P., Metals Engineering, Oborongiz, 1948.Google Scholar
  3. 3.
    Likharev, K. K., Zavodsk. Lab., 15: 1343 (1949).Google Scholar
  4. 4.
    Kantarovich, Z. V., Principles of Design and Chemical Machines and Apparatus, Mashgiz, 1952.Google Scholar
  5. 5.
    Belyaev, N. N., Design, Construction and Investigation of Chemical Apparatus and Machines, Tr. Nauchn. Issled.-Inst.Khim. Mash., 5, Mashgiz, 1950, p. 60.Google Scholar
  6. 6.
    Bridgman, P. W., Physics of High Pressure, Otdel. Nauchn. Tekhn. Inst., 1935. [Bridgman, P. W., Physics of High Pressure, London, 19581.Google Scholar
  7. 7.
    Mayers, A. F., Chem. & Ind., 72 (4): 643 (1954).Google Scholar
  8. 8.
    Chipizhenko, A. P., Zavodsk. Lab., 15: 1452 (1949).Google Scholar
  9. 9.
    Belyaev, A. M., and Sinitskii, A. K. Izv. Akad. Nauk SSSR, Otdel. Tekhn. Nauk, Nos. 2, 3, 4, and 6 (1938).Google Scholar
  10. 10.
    Krichevskii, I. R., and Tsiklis, D. S., Zh. Fiz. Khim., 17: 115 (1943).Google Scholar
  11. 11.
    Sokolov, S. N., Designing for Strength, Issue 2, Mashgiz, 1958.Google Scholar
  12. 12.
    McGregor, G.W., Coffin, L. F., and Fisher, J. C., J. Appl. Phys., 19, March (1958); Lomakin, V. A., Inzh. Sb. Akad. Nauk SSSR, 21. (1955).Google Scholar
  13. 13.
    Makhonina, T.A., Designing for Strengths, Issue 2, Mashgiz, 1958.Google Scholar
  14. 14.
    Gladkovskii, V. A., Vereshchagin, L. F., and Ivanov, V. E., Fiz. Metal. i Metalloved., 6: 1100 (1958).Google Scholar
  15. 15.
    Naidich, I. M., Tr. Nauk Issled.-Inst. Khim. Mash., Collection of articles, 10: 125 (1951).Google Scholar
  16. 16.
    Faupil, J. H., Petrol. Refiner., 23(9):247 (1959); Ind. Eng. Chem., 49: 1979 (1957).Google Scholar
  17. 17.
    Bridgman, P. W., Large Plastic Deformation and Fracture (translated from English, McGraw-Hill, 1952), IL, 1955.Google Scholar
  18. 18.
    Smirnov-Alyaev, G. A., The Theory of Autoreinforcement of Cylinders, Oborongiz, 1940.Google Scholar
  19. 19.
    De la Shez, Design of Self-Loading Weapons, II, GIZ, 1940.Google Scholar
  20. 20.
    Machine Building (Encyclopedic Handbook), Vol. 1, Book 2, Mashgiz, 1952, p. 377.Google Scholar
  21. 21.
    Korndorf, B. A., High Pressure Techniques in Chemistry, Goskhimizdat, 1952.Google Scholar
  22. 22.
    Class, J., and Mayers, A. F., Chem. Ing. Tech., 24:184 (1952); Siebel, E., and Schwaigerer, S., Chem. Ing. Tech., 24: 199 (1952).Google Scholar
  23. 23.
    Comings, E. W., High Pressure Technology, New York, 1956; Neiman, E. Ya., and Pimshtein, P. G., Khim. Mash., 2: 23 (1964).Google Scholar
  24. 24.
    Bridgman, P. W., Smithsonian Inst. Publ. Rep., 199 (1951).Google Scholar
  25. 25.
    Timoshenko, S. P., and Lessel’s, D., Applied Theory of Elasticity, GONTI, 1931.Google Scholar
  26. 26.
    Gonikberg, M. G., Tsiklis, D. S., and Opekunov, A. A., Dokl. Akad. Nauk SSSR, 129: 88 (1959).Google Scholar
  27. 27.
    Mil’vitskii, R. V., Khim. Mash., 1: 31 (1938).Google Scholar
  28. 28.
    Mirinskii, D. S., Zh. Prikl. Mekhan. i Tekhn Fiz., 2: 165 (1960).Google Scholar
  29. 29.
    Butuzov, V. P., Mirinskii, D. S., and Kats, G. S., Symposium on Deep Processes, Izd. Akad. Nauk SSSR, 1962, p. 172.Google Scholar
  30. 30.
    Wentorf, R. H., (Editor), Modern Very High Pressure Technique, London, 1962 [Russian translation, Izd. “Mir,” 19641.Google Scholar
  31. 31.
    Hall, H. T., Rev. Sci. Instrum., 29(4):267 (1958); Bovenkerk, H. P., Bundy, F. P., Hall, H. T., Strong, H. M., and Wentorf, R. H., Nature, 184: 1094 (1959).Google Scholar
  32. 32.
    Bridgman, P. W., Most Recent Work in the Area of High Pressures, GIIL, 1948.Google Scholar
  33. 33.
    Hall, H. T., Rev. Sci. Instrum., 31 (2): 125 (1960).CrossRefGoogle Scholar
  34. 34.
    Vereshchagin, L. F., Galaktionov, V. A., Semerchan, A. A., and Slesarev, V. N., Dokl. Akad. Nauk SSSR, 132: 1059 (1960).Google Scholar
  35. 35.
    Wilson, W. B., Rev. Sci. Instrum., 31 (3): 331 (1960).CrossRefGoogle Scholar
  36. 36.
    Ryabinin, Yu. N., and Livshits, L. D., Zh. Tekhn. Fiz., 29: 1167 (1959).Google Scholar
  37. 37.
    Boyd, F. R., and England, J. L., Yearbook Carnegie Inst., 57: 170 (1958).Google Scholar
  38. 38.
    Daniels, W., and Jones, M. T., Rev. Sci. Instrum., 32 (8): 885 (1961).CrossRefGoogle Scholar
  39. 39.
    Ryabinin, Yu. N., Fiz. Metal. i Metalloved., 6: 393 (1958).Google Scholar
  40. 40.
    Chirstiansen, E. W., Kistler, S. S., and Gogarty, W. B., Rev. Sci. Instrum., 32(7):775 (1961); Andreatch, P., and Andersen, O. L., Rev. Sci. Instrum., 28 (4): 288 (1957).Google Scholar

Copyright information

© Plenum Press 1968

Authors and Affiliations

  • Daniil S. Tsiklis

There are no affiliations available

Personalised recommendations