Advertisement

Construction Materials Used for Operations at High and Ultrahigh Pressures

  • Daniil S. Tsiklis

Abstract

The first stage in experimental investigation is the design, manufacture, and assembly of apparatus, instruments, and installations that will permit the necessary experiments to be performed. The design of apparatus depends to a great extent on the materials available to the investigator for manufacture. When investigations are to be performed at pressures reaching a half million atmospheres and at temperatures reaching several thousands of degrees, the experimenter needs materials with special qualities. In this chapter there are analyzed the properties of a number of materials (steels; packing, lubricating, and insulating materials; and pressure-transmitting materials) employed at high and ultrahigh pressures.

Keywords

Tensile Strength Impact Strength Molybdenum Disulfide Construction Material Steel Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Mikhailov-Mikheev, P. B., Handbook on Metal Materials;Google Scholar
  2. Mashgiz, 1961Google Scholar
  3. Zhuravlev, V. N., and Nikolaeva, O. I., Designer’s Handbdok, GNTI, Machine Literature, 1962.Google Scholar
  4. 2.
    Liberman, L. Ya., and Peisikhis, M. I., Handbook on Properties of Steels Used in Boiler and Turbine Construction, Mashgiz, 1958.Google Scholar
  5. 3.
    Nitrogen Worker’s Handbook, Goskhimizdat, 1944.Google Scholar
  6. 4.
    Slavin, D. O., and Shteinman, E. B., Metals and Alloys in Chemical Machine Building and Apparatus Construction, Mashgiz, 1951.Google Scholar
  7. 5.
    Vyaznikov, N. F., Alloy Steel and Its Heat Treatment, Metallurgizdat, 1951.Google Scholar
  8. 6.
    Lancaster, I. F., Petrol. Refiner., 43 (10): 161 (1964).Google Scholar
  9. 7.
    Rakovskii, V. S., Smirnov, F. F., Rozhdestvenskii, L. A., and Kryukov, I. M., Hard Alloys in Machine Building Mashgiz, 1955Google Scholar
  10. Zelikman, A. N., Metallurgy of Tungsten and Molybdenum, Metallurgizdat, 1949.Google Scholar
  11. 8.
    Peters, E., and Byerly, I. I., Rev. Sci. Instrum., 34(7):819(1963).CrossRefGoogle Scholar
  12. 9.
    Sarrak, V. I. Uspeki Fiz. Nauk, 67 (2): 339 (1959)Google Scholar
  13. Garber, R. I., and Gindin, I. A., Uspeki Fiz. Nauk, 70 (1): 57 (1960).Google Scholar
  14. 10.
    Chem. News, 38:54 (1960); H. Eiring, Ind. Eng. Chem., 51: 5 (1959).Google Scholar
  15. 11.
    Kurdyumov, G. V., and Osipyan, Yu. A., Vestn. Akad. Nauk SSSR, 5: 7 (1963).Google Scholar
  16. 12.
    Sakhin, S. I., and Sokolov, O. G., Metalloved. i Term. Obrabotka Meta. 1: 14 (1962).Google Scholar
  17. 13.
    Ershova, T. P., Ponyatovskii, E. G., Dokl. Akad. Nauk SSSR, 151: 1364 (1963)Google Scholar
  18. Ershova, T. P., Fiz. Metal. i Metalloved., 16:91 (1963), 17: 144 (1964).Google Scholar
  19. 14.
    Gulyaev, A. P., Metals Engineering, Oborongiz, 1948.Google Scholar
  20. 15.
    Kondrat’ev, V. N., Zay. Lab., 15: 472 (1949).Google Scholar
  21. 16.
    Gillman, L. A., and Maksimov, N. M., Zay. Lab., 11: 1091 (1945).Google Scholar
  22. 17.
    Drozd, M. S.,Zay. Lab., 24: 74, 1002 (1958).Google Scholar
  23. 18.
    Kennedy, G. G., Am. J. Sci., 248: 540 (1950).CrossRefGoogle Scholar
  24. 19.
    Shvarts, G. L., Shevelkin, B. N., and Toropov, V. N., Zh. Vses. Khim. Obshchestva, 8 (3): 317 (1963).Google Scholar
  25. 20.
    Kornilov, I. I., and Polyakova, R. S., Zh. Vses. Khim. Obshchestva, 8(3):305 (1963)Google Scholar
  26. 20.
    Khimushin, F. F., Legirovaniye, Termoobrabotka i Svoystva Zharoprochnykh Staley i Splevov, Oborongiz, 1962Google Scholar
  27. Kornilov, I. I., Sovremennyye Vysokoprochnyye Metal-Splavy, Experimental Investigations in the Area of Deep Processes, Izd. Akad. Nauk SSSR 1962Google Scholar
  28. Hinde, J., Chem. Proc. Eng., 44 (4): 179 (1963).Google Scholar
  29. 21.
    Shapiro, M. B., Moskvin, N. N., Kristal’, M. M., and Makarov, V. V., Tr. Nauchn.-Issled. Inst. Khim. Mash., No. 40, 1962.Google Scholar
  30. 22.
    Kantarovich, Z. B., Principles of Design of Chemical Machines and Apparatus, Mashgiz, 1960.Google Scholar
  31. 23.
    Zaikov, M. A., Zh. Tekh. Fiz., 19: 684 (1949).Google Scholar
  32. 24.
    Uzhik, G. V., Strength and Plasticity of Metals at Low Temperatures; Izd. Akad. Nauk SSSR, 1957; Fradkov, A. B., Kislorod, 5: 34 (1945)Google Scholar
  33. Parker, C. M., and Sullivan, J. W. W., Ind. Eng. Chem., 55 (5): 18 (1963).CrossRefGoogle Scholar
  34. 25.
    Basset, J., J. Phys. Radium, 1 (18): 121 (1940).CrossRefGoogle Scholar
  35. 26.
    Bridgman, P. W., Investigation of Great Plastic Deformations and Rupture, Izdatinlit, 1955.Google Scholar
  36. 27.
    Ryabinin, Yu. N., Livshits, I. D., and Vereshchagin, L. F., Fiz. Tverd. Tela, 1(3):476 (1959); 1 (6): 960 (1959).Google Scholar
  37. 28.
    Vereshchagin, L. F., and Shapochkin, V. A., Fiz. Metal. i Metalloved., 7: 479 (1959)Google Scholar
  38. Vereshchagin, L. F., and Zubova, E. V., Dokl. Akad. Nauk SSSR, 134: 787 (1960)Google Scholar
  39. Shapochkin, V. A., Fiz. Metal. i Metal-loved., 9: 303 (1960).Google Scholar
  40. 29.
    Ratner, S. I., Zh. Tekhn. Fiz., 19: 408 (1949).Google Scholar
  41. 30.
    Livshits, L. D., Ryabinin, Yu. N., Bersenev, B. I., and Martynov, E. D., Dokl. Akad. Nauk SSSR, 154: 86 (1964).Google Scholar
  42. 31.
    Bersenev, B. I., Vereshchagin, L. F., Ryabinin, Yu. N., and Livshits, L. D., Some Problems of Great Plastic Deformations of Metals at High Pressures, Izd. Akad. Nauk SSSR, 1960.Google Scholar
  43. 32.
    Solids Under Pressure (eds. Paul., W., and Warschauer, D. M.) Academic Press, New York, 1963.Google Scholar
  44. 33.
    Krichevskii, I.R., and Khazanova, N. E., Zh. Fiz. Khim., 21: 719 (1947).Google Scholar
  45. 34.
    Dodge, B. F., Chem. & Ind., 87 (6): 169 (1962)Google Scholar
  46. Thygeson, J. R., and Molstad, M. C., J. Chem. Eng. Data, 9 (2): 309 (1964).CrossRefGoogle Scholar
  47. 35.
    Ness,H. C., and Dodge, B. F., Chem. Eng. Progr., 51(6):266 (1955).Google Scholar
  48. 36.
    Ashmarin, N. V., Amer. Tekhn. i Promyshlennost, No. 12 (1946).Google Scholar
  49. 37.
    Class, J., Werkstoff Korrosion, 5 (8–9): 281 (1954).CrossRefGoogle Scholar
  50. 38.
    Comings, E. W., High-Pressure Technology, New York, 1956.Google Scholar
  51. 39.
    Bridgman, P. W., The Physics of High Pressure, ONTI, 1935Google Scholar
  52. Bridgman, P. W., The Physics of High Pressure, London, 1958.Google Scholar
  53. 40.
    Gudtsov, N. T., and Govze, M. N., Izv. Akad. Nauk SSSR, Otdel. Tekhn. Nauk, 1: 67 (1952).Google Scholar
  54. 41.
    Rozhanskii, V. N., Pertsov, N. V., Shchukin, E. D., and Rebinder, P. A., Dokl. Akad. Nauk SSSR, 116 (5): 769 (1957).Google Scholar
  55. 42.
    Stewart, J. W., Phys. Rev., 97 (3): 578 (1955).CrossRefGoogle Scholar
  56. 43.
    Short Handbook on Processing of Nonferrous Metals, Metallurgizdat, 1945; Molyneax, F., Chem. Process. Eng., 43: 204 (1962).Google Scholar
  57. 44.
    Black, G. N., Chem. & Ind., 30: 727 (1952).Google Scholar
  58. 45.
    Afanas’ev, P. A., The Usage of Plastics in Machine Building, Mashgiz, 1961.Google Scholar
  59. 46.
    Swenson, C., Rev. Sci. Instrum., 25 (8): 834 (1954)CrossRefGoogle Scholar
  60. Browman, H., and others, Rev. Sci. Instrum., 27: 550 (1956).CrossRefGoogle Scholar
  61. 47.
    Merkel, E., Chem. Ingr. Techn., 27(5): 279, 284 (1955).Google Scholar
  62. 48.
    Polyethylene (Ed. by M. I. Garbar) Goshkimizdat, 1955.Google Scholar
  63. 49.
    Bockhoff, F. J., and Roth, R. F., Chem. Eng. Progr., 51(6):252 (1955); Gourlag, J. S., and Jones, M., Brit. Plastics, 29: 446 (1956).Google Scholar
  64. 50.
    Dyment, J., and Ziebland, H., J. Appl. Chem., 8: 203 (1958).CrossRefGoogle Scholar
  65. 51.
    Saechtling, H., Chem. Ind. Techn., 27 (10): 602 (1955).CrossRefGoogle Scholar
  66. 52.
    Knowles, J. K., and Diets, A. G. H., Trans. ASME, 77: 177 (1955).Google Scholar
  67. 53.
    Aibinder, S. B., Lakes, M. G., and Maiors, N. Yu., Dokl. Akad. Nauk SSSR, 159 (6): 1244 (1964).Google Scholar
  68. 54.
    McGeer, P. L., and Duns, H. S., J. Chem. Phys., 20: 1813 (1952).CrossRefGoogle Scholar
  69. 55.
    Furucawa, G., McCoskey, R., and King, G., J. Res. Nat. Bur. Standards, 49: 273 (1952)Google Scholar
  70. Chegodaev, D. D.., Polyfluoroethylene Resins, Goskhimizdat, 1956.Google Scholar
  71. 56.
    Zukowsky, R., and Gase, R., Nature, 183: 37 (1959).Google Scholar
  72. 57.
    Welbergen, H. G., J. Sci. Instrum., 10: 247 (1933).CrossRefGoogle Scholar
  73. 58.
    Leipunskii, O. I., Zh. Tekhn. Fiz., 10: 596 (1940).Google Scholar
  74. 59.
    Hiller, Osterr. Chem.-Ztg.; 45, 111 (1942); Zh. Khim. Prom., Vol. 17, No. 7 (1940).Google Scholar
  75. 60.
    Bol’shakov, P. E., Trudy GIAP, No. 1, Goskhimizdat, 1953.Google Scholar
  76. 61.
    Morey, Properties of Glass, New York, 1938.Google Scholar
  77. 62.
    Mendeleev, D. I., Zh. Russ. Fiz. Khim. Obshchestva, VI, No. 5, 1, 1 (1874).Google Scholar
  78. 63.
    Khalilov, Kh. M., Dokl. Akad. Nauk Azerb. SSR, 8: 221 (1952).Google Scholar
  79. 64.
    Key, W. B., Chem. Eng. Progr. (Symp. Ser.), 48 (3): 71 (1952).Google Scholar
  80. Bartenev, G. M., Dokl. Akad. Nauk SSSR, 91:523 (1953).Google Scholar
  81. 66.
    Morley, J. G., Nature, 189: 1560 (1959).CrossRefGoogle Scholar
  82. 67.
    Pugh, H. L. D., Hodgson, G., and Gunn, D. A., J. Sci. Instrum. 40: 221 (1963).CrossRefGoogle Scholar
  83. 68.
    Pryanishnikov, V. P., Khim. Prom., 1: 15 (1954).Google Scholar
  84. 69.
    Canad. Chem. Proc. Ind., 30, No. 3 (1946).Google Scholar
  85. 70.
    Hyde, G. R., Friction at Very High Pressure (M. S. Thesis), 1957.Google Scholar
  86. 71.
    Reeves, L. E., Scott, G. I., and Babb, S. E., J. Chem. Phys., 40 (12): 3662 (1964).CrossRefGoogle Scholar
  87. 72.
    Kiyama, R., Teranishi, H., and Inoue, K., Rev. Phys. Chem. Japan, 23 (1): 20 (1953).Google Scholar
  88. 73.
    Speransov, N. N., Handbook of Petroleum Products Consumer, Gostoptekhizdat, 1940Google Scholar
  89. Nevyazhskaya, L., and Novikov, L., Nonmetallic Materials (a handbook ), Mashgiz, 1948.Google Scholar
  90. 74.
    Volarovich, M. P., Izv. Akad. Nauk SSSR, Otdel. Tekhn. Nauk, 3: 27 (1940).Google Scholar
  91. 75.
    Zolotykh, E. V., Izmerit. Tekhn., 3: 2 (1955).Google Scholar
  92. 76.
    Zolotykh, E. V., Tr. Inst. Komiteta Standartov, Mer Izmerit. Prib. SSSR, 75 (135): 123 (1964).Google Scholar
  93. 77.
    Zolotykh, E. V., Tr. Inst. Komiteta Standartov, Mer Izmerit. Prib. SSSR, 46 (106): 81 (1960).Google Scholar
  94. 78.
    Babb, E. S., and Scott, G. I., J. Chem. Phys., 40 (12): 3666 (1964).CrossRefGoogle Scholar
  95. 79.
    Perevertkin, S. M., Khrapovitskii, Yu. S., and Tsiklis, D. S., Trudy GIAP, No. 7, Goskhimizdat, 1957.Google Scholar
  96. 80.
    Bett, K. E., Hayes, P. H., and Newitt, D. M., Phil. Trans. Roy. Soc., A247 (923): 59, London (1954).Google Scholar
  97. 81.
    Bett, K. E., Weale, K. E., and Newitt, D. M., Brit. J. Appl. Phys., 5: 243 (1954).CrossRefGoogle Scholar
  98. 82.
    Andreatch, P., and Andersen, O. L., Rev. Sci. Instrum., 28: 288 (1957).CrossRefGoogle Scholar
  99. 83.
    Ryabinin, Yu. N., and Livshits, L. D., Zh. Tekhn Fiz., 29: 1167 (1959).Google Scholar
  100. 84.
    Vereshchagin, L. F., Fedorovskii, A. E., Isaikov, V. K., Slesarev, V. N., andSemerchan,A.A.,Inzh. Fiz. Zh., 3: 132 (1960).Google Scholar
  101. 85.
    Ind. Eng. Chem., 48, No. 5 (1956); 50, No. 9 (1958).Google Scholar

Copyright information

© Plenum Press 1968

Authors and Affiliations

  • Daniil S. Tsiklis

There are no affiliations available

Personalised recommendations