Advertisement

Polypeptide Chain Structure of Inter-α-Trypsin Inhibitor and Pre-α-Trypsin Inhibitor: Evidence for Chain Assembly by Glycan and Comparison with other “Kunin”-Containing Proteins

  • Jan J. Enghild
  • Ida B. Thørgersen
  • Salvatore V. Pizzo
  • Guy Salvesen
Part of the NATO ASI Series book series (NSSA, volume 191)

Abstract

Proteins structurally related to the proteinase inhibitor aprotinin, systematically known as pancreatic trypsin inhibitor (Kunitz), occur in animals from a variety of orders including mammals, moluscs and coelenterates.1 The wide distribution of these proteins suggests that the ancestral gene is very old, at least as old as the radiation of multicellular animals.2

Keywords

Sodium Dodecyl Sulfate Human Epidermal Growth Factor Receptor Heavy Chain Trypsin Inhibitor Horseshoe Crab 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Gebhard, and K. Hochstrasser, Inter-a-trypsin inhibitor and its close relatives. In: Proteinase Inhibitors (AJ. Barrett, and G. Salvesen, eds), pp. 389–401, Elsevier, Amsterdam (1986).Google Scholar
  2. 2.
    M. Laskowski, Jr. and I. Kato, Protein inhibition of proteinases, Ann. Rev. Biochem. 49, 593–626 (1980).Google Scholar
  3. 3.
    W. Gebhard, T. Schreitmüller, K. Hochstrasser, and E. Wachter, Two out of three kinds of subunits of inter-a-trypsin inhibitor are structurally related. Eur. J. Biochem., 181, 571–576 (1989).Google Scholar
  4. 4.
    R.E. Tan7i, A I McClatchey, E.D. Lamperti, L. Villa-Komaroff, J.F. Gusella, and R.L. Neve, Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease, Nature 331, 528–530 (1988).Google Scholar
  5. 5.
    T.-C. Wun, K.K. Kretzmer, T.J. Girard, J.P. Miletech, and G.T. Broze, Cloning and characterization of a cDNA coding for the lipoprotein-associated coagulation inhibitor shows that it consists of three tandem Kunitz-type inhibitory domains. J. Biol. Chem. 263, 6001–6004 (1988).Google Scholar
  6. 6.
    J.F. Kaumeyer, J.O. Polazzi, and M.P. Kotick, The mRNA for a proteinase inhibitor related to the HI-30 domain of inter-a-trypsin inhibitor also encodes a1-microglobulin (protein HC). Nucleic Acids Res. 14, 7839–7850 (1986).CrossRefPubMedGoogle Scholar
  7. 7.
    T. Schreitmüller, K. Hochstrasser, P.W.M. Reisinger, E. Wachter, and W. Gebhard, cDNA cloning of human inter-a-trypsin inhibitor discloses three different proteins. BioL Chem. Hoppe-Seyler 368,963–970 (1987).Google Scholar
  8. 8.
    J.P. Salier, K. Kurachi, and J.-P. Martin, Isolation and characterization of cDNAs encoding the heavy chain of human inter-a-trypsin inhibitor (IaTI): unambiguous evidence for multipolypeptide chain structure of IaTI. Proc. Natl. Acad. Sei. USA 84, 8272–8276 (1987).Google Scholar
  9. 9.
    M. Diarra-Mehpour, J. Bourguignon, R. Sesboüe, M.-G. Mattei, E. Passage, J.P. Sauer, and J: P.Martin, Human plasma inter-a-trypsin inhibitor is encoded by four genes on three chromosomes. Eur. J. Biochem. 179,147–154 (1989).Google Scholar
  10. 10.
    P. Reisinger, K. Hochstrasser, K. Albrecht, G.J. Lempart, and J.-P. Salier, Human inter-a-trypsin inhibitor: Localization of the Kunitz-type domains in the N-terminal part of the molecule and their release by a trypsin-like proteinase. Biol. Chem. Hoppe-Seyler 366, 479–483 (1985).Google Scholar
  11. 11.
    M. Morii, and J. Travis, The reactive site of human inter-a-trypsin inhibitor is in the amino-terminal half of the protein. BioL Chem. Hoppe-Seyler’s 366, 19–21 (1985).Google Scholar
  12. 12.
    T.E. Jessen, K.L. Faarvang, and M. Ploug, Carbohydrate as covalent crosslink in human inter-atrypsin inhibitor: A novel plasma protein structure. FEBS Lett 230, 195–200 (1988).CrossRefPubMedGoogle Scholar
  13. 13.
    A.F. Bury, Analysis of protein and peptide mixtures. Evaluation of three different sodium dodecyl sulphate polyacrylamide gel electrophoresis buffer systems. J. Chromatogr. 213, 491–500 (1981).Google Scholar
  14. 14.
    J. Uriel, and J. Berges, Characterization of natural inhibitors of trypsin and chymotrypsin by electrophoresis in acrylamide-agarose gels. Nature 218, 578–580 (1968).CrossRefPubMedGoogle Scholar
  15. 15.
    P. Matsudaira, Sequence from picomole quantities of protein electroblotted onto polyvinylidene difluoride membranes. J. BioL Chem. 262, 10035–10038 (1987).Google Scholar
  16. 16.
    A.W. Brauer, C.L. Oman, and M.N. Margolies, Use of O-phthalaldehyde to reduce background during automated Edman degradation. Anal. Biochem. 137, 134–142 (1984).Google Scholar
  17. 17.
    H.T. Sojar, and O.P. Bahl, Chemical deglycosylation of glycoproteins. Meth. EnzymoL 138, 341–350 (1987).Google Scholar
  18. 18.
    G.S. Salvesen, and H. Nagase, Inhibition of proteolytic enzymes. In: Proteolytic Enzymes: A Practical Approach (R. Beynon, and J. Bond, eds), pp. 83–104 IRL Press, Oxford (1989).Google Scholar
  19. 19.
    L. Odum, and S. Ingwersen, Electrophoretic investigations of acid-stable proteinase-inhibitory activity in human serum. Hoppe-Seyler’s Z. PhysioL Chem. 364, 1671–1677 (1983).Google Scholar
  20. 20.
    J.P. Salier, J.P. Martin, P. Lambin, H. McPhee, and K. Hochstrasser, Purification of the human serum inter-a-trypsin inhibitor by zinc chelate and hydrophobic interaction chromatographies. Anal. Biochem. 109, 273–283 (1980).Google Scholar
  21. 21.
    J.J. Enghild, I.B. Thogersen, S.V. Pizzo, and G. Salvesen, Analysis of inter-a-trypsin inhibitor and a novel trypsin inhibitor, pre-a-trypsin inhibitor, from human plasma. Polypeptide chain stoichiometry and assembly by glycan. J. BioL Chem., 264, 15975–15981 (1989).Google Scholar
  22. 22.
    W. Gebhard, T. Schreitmüller, K. Hochstrasser, and E. Wachter, Complementary DNA and derived amino acid sequence of the precursor of one of the three protein components of the inter-atrypsin inhibitor complex. FEBS Lett 229, 63–67 (1988).CrossRefPubMedGoogle Scholar
  23. 23.
    G.S. Salvesen, and A.J. Barrett, Covalent binding of proteinases in their reaction with a2macroglobulin. Biochem. J. 187, 695–701 (1980).Google Scholar
  24. 24.
    H. Kido, Y. Yokogoshi, and N. Katanuma, Kunitz-type protease inhibitor found in rat mast cells. Purification, properties, and amino acid sequence. J. Biochem. 91, 1519–1530 (1988).Google Scholar
  25. 25.
    K. Kondo, H. Toda, K. Narito, and C.Y. Lee, Amino acid sequence of ß2-bungarotoxin from bungarus multicinctus serum. The amino acid substitutions in the B chains. J. Biochem. 91, 1519–1530 (1982).Google Scholar
  26. 26.
    T. Nakamura, T. Hirai, F. Tohunaga, S. Kawabata, and S. Iwanaga, Purification and amino acid sequence of Kunitz-type protease inhibitor found in the hemocytes of horseshoe crab (Tachypleus tridentatus). J. Biochem. 101, 1297–1306 (1987).PubMedGoogle Scholar
  27. 27.
    T. Sasaki, Amino acid sequence of a novel Kunitz-type chymotrypsin inhibitor from hemolymph of silkworm larvae, Bombyx mori. FEBS Lett. 168, 227–270 (1984).CrossRefGoogle Scholar
  28. 28.
    T.E. Creighton, and I.G. Charles, Sequence of the genes and polypeptide precursors for two bovine protease inhibitors. J. MoL BioL 194, 11–22 (1987).Google Scholar
  29. 29.
    T. Oltersdorf, L.C. Fitz, D.B. Schenk, I. Lieberburg, K.L. Johnson-Wood, E.C. Reattie, P.J. Ward, R.W. Blacher, H.F. Dovey, and S. Sinha, The secreted form of the Alzheimer’s amyloid precursor protein with the Kunitz domain is protease nexin IL Nature, 341, 144–147 (1989).Google Scholar
  30. 30.
    A. Weidemann, G. König, D. Bunke, P. Fischer, J.M. Salbaum, C.L. Masters, and K. Beyreuther, Identification, biogenesis and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell 57, 115–126 (1989).Google Scholar
  31. 31.
    S. Huber, K.H. Winterhalter, and L. Vaughan, Isolation and sequence analysis of the glycosaminoglycan attachment site of type IV collagen. J. Biol. Chem. 263, 752–756 (1988).Google Scholar
  32. 32.
    K. Hochstrasser, O.L. Schönberger, I. Rossmanith, and E. Wachter, E., Kunitz-type proteinase inhibitors derived from limited proteolysis of the inter-a-trypsin inhibitor. V. Attachments of carbohydrates in the human urinary trypsin inhibitor isolated by affinity chromatography. HoppeSeyler’s Z. PhysioL Chem. 3621357–1362 (1981).Google Scholar
  33. 33.
    W. Balduyck, C. Mizon, H. Loutfi, C. Richet, P. Roussel, and J. Mizon, The major human urinary trypsin inhibitor is a proteoglycan. Eur. J. Biochem. 158, 417–422 (1986).Google Scholar
  34. 34.
    M.W. Swaim, J.J. Enghild, EA. Auerswald, S.V. Pizzo, and G. Salvesen, Biosynthesis of inter-a-inhibitor. J. Cell BioL 107, p 834a (1988)Google Scholar
  35. 35.
    G. P. Frenette, R.W. Ruddon, R.F. Krzesicki, JA. Naser, and B.P. Peters, Biosynthesis and deposition of a noncovalent laminin-heparan sulfate proteoglycan complex and other basal lamina components by a human malignant cell line. J. BioL Chem. 264, 3078–3088 (1989).Google Scholar
  36. 36.
    A. Ullrich, L. Cousens, J.S. Hayflick, TJ. Dull, A. Gray, A.W. Tam, J. Lee, Y. Yarden, TA. Liebermann, J. Schlessinger, J. Downward, E.L.V. Mayes, N. Whittle, MJ. Waterfield, and P. H. Seeburg, Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermal carcinoma cells. Nature 309, 418–425 (1984).CrossRefPubMedGoogle Scholar
  37. 37.
    C.W. Pratt, and S.V. Pizzo, Mechanism of action of inter-a-trypsin inhibitor. Biochemistry 26, 28552863 (1987).Google Scholar
  38. 38.
    J. Potempa, K. Kwon, R. Chawla, and J. Travis, Inter-a-trypsin inhibitor. Inhibition spectrum of native and derived forms. J. BioL Chem., in press (1989).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Jan J. Enghild
    • 1
  • Ida B. Thørgersen
    • 1
  • Salvatore V. Pizzo
    • 1
  • Guy Salvesen
    • 1
  1. 1.From the Department of PathologyDuke University Medical CenterDurhamUSA

Personalised recommendations