Advertisement

The Heparin Binding Site and Activation of Protease Nexin I

  • Dyfed LL. Evans
  • Peter B. Christey
  • Robin W. Carrell
Part of the NATO ASI Series book series (NSSA, volume 191)

Abstract

Protease Nexin I (PNI) is a heparin-activatable cell-associated member of the serpin superfamily. It is a 44 kDa thrombin (Th) and urokinase inhibitor which is secreted by cultured human foreskin fibroblasts and some other non-vascular cells.1,2 In the presence of optimal concentrations of the glycosaminoglycan — heparin, the association constant for the formation of the PNI-thrombin complex increases by a factor of 500-fold;3 giving a rate constant for the reaction of 1.1x109M−1s−1, which is near to the theoretical diffusion-controlled limit.

Keywords

Dermatan Sulfate Prime Binding Site Heparin Binding Human Foreskin Fibroblast Reactive Centre Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.B. Baker, DA. Low, R.L. Simmer, and D. Cunningham, Protease-nexin a cellular component that links thrombin and plasminogen activator and mediates their binding to cells. Cell 21: 37 (1980).CrossRefPubMedGoogle Scholar
  2. D.L. Eaton, and J.B. Baker, Evidence that a variety of cultured cells secrete protease nexin and produce a distinct cytoplasmic serine protease binding factor. J. Cell. Physiol. 117: 175 (1983).Google Scholar
  3. 3.
    A. Wallace, G. Rovelli, J. Hofsteenge, and S.R. Stone, Effect of heparin on the glia-derived-nexin-thrombin interaction. Biochem J. 257: 191 (1989).Google Scholar
  4. 4.
    R.D. Rosenberg, Chemistry of the hemostatic mechanism and its relationship to the activation of heparin. Fed. Proc., Fed. Am. Soc. Exp. Biol. 36: 10 (1977).Google Scholar
  5. 5.
    J. Choay, J-C. Lormeau, M. Petiou, P. Sinay, and J. Fareed, Structural studies on a biologically active hexasaccharide obtained from heparin. Ann. N.Y. Acad. Sci. 370: 644 (1981).Google Scholar
  6. 6.
    M. Hoylaerts, W.G. Owed, and D. Cohen, Involvement of heparin chain length in the heparin-catalyzed inhibition of thrombin by antithrombin III. J. Biol. Chem. 259: 5670 (1984).Google Scholar
  7. 7.
    KA. Parker, and D.M. Tollefsen, The protease specificity of heparin cofactor II. Inhibition of thrombin generated during coagulation. J. Biol. Chem. 260: 3501 (1985).Google Scholar
  8. 8.
    F.C. Church, C.M. Noyes, and M.J. Griffith, Inhibition of chymotrypsin by heparin cofactor II. Proc. Natl. Acad. Sci. USA 82: 6431 (1985).CrossRefPubMedGoogle Scholar
  9. 9.
    D.M. Tollefsen, CA. Pestka, and W.J. Monafo, Activation of heparin cofactor H by dermatan sulfate. J. Biol. Chem. 258: 6713 (1983).Google Scholar
  10. 10.
    H. Lobermann, R. Tokuka, J. Deisenhofer, and R. Huber, Humana proteinase inhibitor: crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implication for function. J. Mol. Biol. 177: 531 (1984).Google Scholar
  11. 11.
    A.M. Lesk, M. Levitt, and C. Chothia, Alignment of the amino acid sequences of distantly related proteins using variable gap penalties. Protein Eng. 1: 11 (1984).Google Scholar
  12. 12.
    S.T. Olson, K.R. Srinivasan, I. Björk, and D. Shore, Binding of high affinity heparin to antithrombin III. Stopped flow kinetic studies of the binding interaction. J. Biol. Chem. 256: 11073 (1981).Google Scholar
  13. 13.
    H. Jomvall, W.W. Fish, and. I. Björk, The thrombin cleavage site in bovine antithrombin. FEES Lett. 106: 358 (1979).CrossRefGoogle Scholar
  14. 14.
    R.W. Carrell, D.R. Boswell, S.O. Brennan, and M.C. Owen, Active site of al-antitrypsin: homologous site in antithrombin. Biochem. Biophys. Res. Comm. 93: 3994 (1980).Google Scholar
  15. 15.
    M.J. Griffith, C M Noyes, and F.C. Church, Reactive site peptide structural similarity between heparin cofactor II and antithrombin III. J. Biol. Chem. 260: 2218 (1985).Google Scholar
  16. 16.
    M. McGrogan, J. Kennedy, M.P. Li, C. Hsu, R.W. Scott, C.S. Simonssen, and J.B. Baker, Molecular cloning and expression of two forms of human protease nexin I. Biotechnology 6: 172 (1988).CrossRefGoogle Scholar
  17. 17.
    M. Petitou, P. Duchaussoy, I. Lederman, J. Choay, C.J. Jaquinet, and C.P. Sinay, Synthesis of heparin fragments: a methyl alpha-pentoside with high affinity for heparin. Carbohydrate Res. 176: 67 (1987).CrossRefGoogle Scholar
  18. 18.
    T. Koide, S. Odani, K. Takahashi, T. Ono, and N. Sakuragawa, Antithrombin III Toyama: replacement of arginine-47 by cysteine in a hereditary abnormal antithrombin III that lacks heparin-binding ability. Proc. Natl. Acad. Sci. USA 81: 289 (1984).Google Scholar
  19. 19.
    M.C. Owen, J.Y. Borg, C. Soria, J. Soria, J. Caen, and R.W. Carrell, Heparin binding defect in a new antithrombin III variant: Rouen, 47 Arg to His. Blood 69: 1275 (1988).Google Scholar
  20. 20.
    J.Y. Borg, M.C. Owen, C. Soria, J. Soria, J. Caen, and R.W. Carrell, Proposed heparin binding site in antithrombin based on arginine 47. A new variant Rouen II 47 Arg to Ser. J. Clin. Invest. 81: 1292 (1988).Google Scholar
  21. 21.
    J-Y. Chang, and T.H. Tran, Antithrombin III Basel. Identification of a Pro-Leu substitution in a hereditary abnormal antithrombin with impaired heparin cofactor activity. J. Biol. Chem. 261: 1174 (1986).Google Scholar
  22. 22.
    M.N. Blackburn, R.L. Smith, J. Carson, and C.C. Sibley, The heparin binding site in antithrombin III. Identification of a critical tryptophan in the amino acid sequence. J. Biol. Chem. 259: 939 (1984).Google Scholar
  23. 23.
    J-Y. Chang, Binding of heparin to human antithrombin III activates selective chemical modification of Lysine 236. Lys 107, Lys 125 and Lys 136 are situated within the heparin-binding site of antithrombin III. J. Biol. Chem. 264: 3111 (1989).Google Scholar
  24. 24.
    S.O. Brenan, P.M. George, and R.E. Jordan, Physiological variant of antithrombin III lacks carbohydrate sidechain at Asn 135. FEBS Lett. 219: 431 (1987).CrossRefGoogle Scholar
  25. 25.
    J.W. Smith, and D.J. Knauer, A heparin binding site in antithrombin III. Identification, purification and amino acid sequence. J. Biol. Chem. 262: 11986 (1987).Google Scholar
  26. 26.
    MA. Blinder, T.R. Andersson, U. Abildgaard, and D.M. Tollefsen, Heparin cofactor II Oslo: mutation of Arg 189 to His decreases the affinity for dermatan sulfate. J. Biol. Chem. 264: 5182 (1989).Google Scholar
  27. 27.
    D.M. Tollefsen, M.E. Peacock, and W.J. Monafo, Molecular size of dermatan sulfate oligosaccharides required to bind and activate heparin cofactor II. J. Biol. Chem. 261: 8854 (1986).Google Scholar
  28. 28.
    A. Danielsson, E. Raub, U. Lindahl, and I. Björk, Role of ternary complexes, in which heparin binds both antithrombin and proteinase in the acceleration of the reaction between antithrombin and thrombin or factor Xa. J. Biol. Chem. 33: 15467 (1986).Google Scholar
  29. 29.
    S.T. Olson, and J.D. Shore, Demonstration of a two-step reaction mechanism for inhibition of a-thrombin by antithrombin III and identification of the step affected by heparin. J. Biol. Chem. 257: 14891 (1982).Google Scholar
  30. 30.
    S.T. Olson, and J.D. Shore, Transient kinetics of heparin-catalysed protease inactivation by antithrombin III. The reaction step limiting heparin turnover in thrombin neutralization. J. Biol. Chem. 261: 13151 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Dyfed LL. Evans
    • 1
  • Peter B. Christey
    • 1
  • Robin W. Carrell
    • 1
  1. 1.Department of HaematologyUniversity of Cambridge MRC CenterCambridgeUK

Personalised recommendations