Advertisement

Structure and Function of Tissue-Type Plasminogen Activator

  • Anton Jan Van Zonneveld
  • Carlie De Vries
  • Hans Pannekoek
Part of the NATO ASI Series book series (NSSA, volume 191)

Abstract

Tissue-type plasminogen activator (t-PA) has a crucial function in fibrinolysis. Its importance as a thrombolytic agent has led to an enormous interest in the structure and function relationships of this molecule. Many studies have been performed both to understand the fundamental molecular mechanisms of plasminogen activation by t-PA and to develop derivatives of the molecule with improved in vivo thrombolytic properties. It was found that t-PA can be considered as a mosaic protein composed of autonomous structural and functional domains.

Keywords

Plasminogen Activator Tissue Plasminogen Activator Plasminogen Activation Amino Caproic Acid Plasminogen Activator Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.C. Robbins, L. Summaria, and R.C. Wohl, Human plasmin, in: “Methods in Enzymology” (L.Lorand ed.), Academic Press, New York 80: 379 (1981).Google Scholar
  2. 2.
    F. Bachmann, Fibrinolysis, in: “Thrombosis and Haemostasis” (Verstraete, M., Vermylen, J., Lijnen, H.R. and Arnout, J. eds.) International Society on Thrombosis and Haemostasis and Leuven University Press, Leuven p 227 (1987).Google Scholar
  3. K. Dano, PA. Andreasen, J. Grondahl-Hansen, P. Kristensen, L.S. Nielsen, and L. Sriver, Plasminogen activators, tissue degradation, and cancer. Adv. Cancer Res. 44: 139 (1985).Google Scholar
  4. 4.
    D.J. Loskutoff, M. Sawdy, and J. Mimuro, Type I plasminogen activator inhibitor, in: “Progress in Thrombosis and Heamostasis” (Coller, B., ed.) W.B. Saunders, Philadelphia 9: 87 (1989).Google Scholar
  5. 5.
    F. Blasi, Surface receptors for urokinase plasminogen activator. Fibrinolysis 2: 73 (1988).Google Scholar
  6. 6. W.R. Stephens, J. Pöllänen, H. Tapiovaara, K.C. Leung, P.S. Sim, E.M. Salonen, E. Ronne, N. Behrendt, K. Dano, and A. Vaheri, Activation of pro-urokinase and plasminogen on Human Sarcoma Cells: A proteolytic system with surface-bound reactants. J. Cell Biol. 108: 1987 (1989).Google Scholar
  7. 7. M. Hoylaerts, D.C. Rijken, H.R. Lijnen, and D. Collen, Kinetics of the activation of plasminogen by human tissue-type plaminogen activator. J. Biol. Chem. 257: 2912 (1982).Google Scholar
  8. 8.
    R.J. Coombs, J. Ellison, A. Woods, and N. Jenkins, Only tissue-type plasminogen activator is secreted by immature bovine Sertoli cell-enriched cultures. J. Endocr. 117: 63 (1987).Google Scholar
  9. 9.
    A. Tsafriri, TA. Bicsak, S.B. Cajander, T. Ny, and A. Hsueh, Suppression of ovulation rate by antibodies to tissue-type plasminogen activator and a2 anti-plasmin. Endocrinology 124: 415 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    G. Moonen, M. Grau-Wagemans, and I. Selah, Plasminogen activator-plasmin system and neuronal migration. Nature 298: 753 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    S. Verrall, and N.W. Seeds, Characterization of 125I-tissue plasminogen activator binding to cerebral granule neurons. J. Cell Biol. 109: 265 (1989).Google Scholar
  12. 12.
    D. Hantaï, J.S. Rao, and B.W. Festoff, Serine protease and serpins: their possible roles in the motor system. Rev. Neurol. (Paris) 144: 680 (1988).Google Scholar
  13. 13.
    J. Grondahl-Hansen, L.R. Lund, E. Ralfkiaer, V. Ottevanger, and K. Dann, Urokinase-and tissue-type plasminogen activators in keratinocytes during wound reepithelialization in vivo. J. Invest. Denn. 90: 790 (1988).Google Scholar
  14. 14.
    D. Collen, On the regulation and control of fibrinolysis. Thromb. Haemost. 43: 77 (1980).Google Scholar
  15. 15.
    D. Pennica, W.E. Holmes, W.J. Kohr, R.N. Harkins, GA. Vehar, CA. Ward, W.F. Bennett, E. Yelverton, P.N. Seeburg, H.L. Heyneker, I.D. Goeddel, and D. Collen, Cloning and expression of human tissue-type plasminogen activator in E.Coli. Nature 301: 214 (1983).PubMedCrossRefGoogle Scholar
  16. 16.
    T. Edlund, T. Ny, M. RAnby, L.O. Heden, G. Palm, E. Holmgren, and S. Josefsson, Isolation of DNA sequences coding for a part of human tissue-type plasminogen activator. Proc. Natl. Acad. Sci. USA 80: 349 (1983).Google Scholar
  17. 17.
    G. Pohl, M. Kallstrom, N. Bergsdorf, P. Wallén, and H. Jornvall, Tissue plasminogen activator: peptide analysis confirm an indirectly derived amino acid sequence, identify the active site serine residue, establish glycosylation sites, and localize variant differences. Biochemistry 23: 3701 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    L. Banyai, A. Varadi, and L. Patthy, Common evolutionary origin of the fibrin-binding structures of fibronectin and tissue-type plasminogen activator. FEBS Lett. 163: 37 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    T. Ny, F. Elgh, and B. Lund, The structure of the human tissue-type plasminogen activator gene: correlation of intron and exon structures to functional and structural domains. Proc. Natl. Acad. Sci. USA 81: 5355 (1984).Google Scholar
  20. 20.
    H. Pannekoek, C. de Vries, and A.J. van Zonneveld, Mutants of human tissue-type plasminogen activator (t-PA): structural aspects of functional properties. Fibrinolysis 2: 123 (1988).Google Scholar
  21. 21.
    W. Gilbert, Genes in pieces revisited. Science 228: 823 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    A.J. van Zonneveld, H. Veerman, and H. Pannekoek, Autonomous functions of structural domains on human tissue-type plasminogen activator. Proc. Natl. Acad. Sci. USA 83: 4670 (1986).Google Scholar
  23. 23.
    A.J. van Zonneveld, H. Veerman, and H. Pannekoek, On the interaction of the finger and the kringle-2 domain of tissue-type plasminogen activator with fibrin• inhibition of kringle-2 binding to fibrin by E-amino caproic acid. J. Biol. Chem. 261: 14214 (1986).Google Scholar
  24. 24.
    K.C. Robbins, I.G. Boreisha, A covalent molecular weight 92000 hybrid plasminogen activator derived from human plasmin fibrin-binding and tissue plasminogen activator catalytic domains. Biochemistry 26: 4661 (1987).PubMedCrossRefGoogle Scholar
  25. 25.
    K.C. Robbins, and Y. Tanaka, Covalent molecular 2192000 hybrid plasminogen activator derived from human plasmin amino terminal and urokinase carboxyl-terminal domains. Biochemistry 25: 3603 (1987).CrossRefGoogle Scholar
  26. 26.
    L. Nelles, H.R. Lijnen, D. Collen, W.E. Holmes, Characterization of a fusion protein consisting of amino acids 1 to 263 of tissue-type plasminogen activator and amino acid 144 to 411 of urokinase type plasminogen activator. J. Biol. Chem. 262: 10855 (1987).Google Scholar
  27. 27.
    J. Pierard, P. Jacobs, D. Gheysen, M. Hoylaerts, B. Andre, L. Topisirovic, A. Cravador, F. de Foresta, A. Herzog, D. Collen, M. De Wilde, and A. Bollen, Mutant and chimeric recombinant plasminogen activators: production in eukaryotic cells and preliminary characterization. J. Biol. Chem. 262: 11771 (1987).Google Scholar
  28. 28.
    D. Gheysen, H.R. Lijnen, L. Pierard, F. de Foresta, E. Demarsin, P. Jacobs, M. De Wilde, A. Bollen, and D. Cohen, Characterization of a recombinant protein with the finger domain of tissue-type plasminogen activator with a truncated single chain urokinase-type plasminogen activator. J. Biol. Chem. 262: 11779 (1987).Google Scholar
  29. 29.
    C. De Vries, H. Veerman, F. Blasi, and H. Pannekoek, Artificial exon shuffling between tissue-type plasminogen activator (t-PA) and urokinase (u-PA): a comparative study on the fibrinolytic properties of t-PA/u-PA hybrid proteins. Biochemistry 27: 2565 (1988).PubMedCrossRefGoogle Scholar
  30. 30.
    S.G. Lee, N. Kalyan, J. Wilhelm, W.-T. Hum, R. Rappaport, S.-M. Cheng, S. Dheer, C. Urban, R.W. Harztell, M. Ronchetti-Blume, M. Levner, and P.P. Hung, Constructions and expression of hybrid plasminogen activators prepared from tissue-type plasminogen activator and urokinase-type plasminogen activator genes. J. Biol. Chem. 263: 2917 (1988).Google Scholar
  31. 31.
    R.H. Lijnen, L. Nelles, B. Van Hoef, E. Demarsin, and D. Collen, Characterization of a chimeric plasminogen activator consisting of aminoacids 1 to 274 of tissue-type plasminogen activator and aminoacids 138–411 of single chain urokinase type plasminogen activator. J. BioL Chem. 203: 19083 (1988).Google Scholar
  32. 32.
    R.H. Lijnen, L. Pierard, M.E. Reff, and D. Gheysen, Characterization of a chimaeric plasminogen activator obtained by insertion of the second kringle structure of tissue-typeylasminogen activa-tor (aminoacids 173 through 262) between residues ASP13° and SER13Y of urokinase-type plasminogen activator. Thromb. Res. 52: 431 (1988).Google Scholar
  33. 33.
    D.C. Rijken, and E. Groeneveld, Isolation and functional characterization of the heavy and light chain of human tissue-type plasminogen activator. J. Biol. Chem. 261: 3098 (1986).Google Scholar
  34. 34.
    I. Dodd, R. Fears, and J.H. Robinson, Isolation and preliminary characterisation of active B-chain of recombinant tissue-type plasminogen activator. Thromb. Haemost. 55: 94 (1986).Google Scholar
  35. 35.
    M.E. MacDonald, A.J. Van Zonneveld, and H. Pannekoek, Functional analysis of the human tissue-type plasminogen activator: the light chain. Gene 42: 59 (1986).Google Scholar
  36. 36.
    J.J. Kraut, Serine proteases: structure and mechanism of catalysis. Ann. Rev. Biochem. 46: 331 (1977).Google Scholar
  37. 37.
    P.B. Sigler, BA. Jeffery, B.W. Matthews, and D.M. Blow, Structure of crystalline a-chymotrypsin.II. A preliminary report including a hypothesis for the activation mechanism. J. Mol. Biol. 35: 143 (1966).Google Scholar
  38. 38.
    B.W. Matthews, P.B. Sigler, R. Henderson, and D.M. Blow, Three-dimensional structure of tosyl-achymotrypsin. Nature (London) 214: 652 (1967).CrossRefGoogle Scholar
  39. 39.
    H.L. Oppenheimer, B. Labouesse, and G.P. Hess, Implication an ionizing group in the conformation and activity of chymotrypsin. J. Biol. Chem. 241: 2720 (1966).Google Scholar
  40. 40.
    P. Wallén, M. Rânby, N. Bergsdorf, and P. Kok, Purification and characterization of tissue plasminogen activator: the occurrence of two different forms and their enzymatic properties, in: “Progress in Fibrinolysis” (Davidson, J.F., Nilsson, I.M., Astedt, B. Eds.) Volume 5 Chuchill Livingstone, Edinburgh, p 16 (1981).Google Scholar
  41. 41.
    D.C. Rijken, M. Hoylaerts, and D. Cohen, Fibrinolytic properties of one-chain human extrinsic (tissue-type) plasminogen activator. J. Biol. Chem. 257: 2920 (1982).Google Scholar
  42. 42.
    K.M. Tate, D.L. Higgins, W.E. Holmes, M.E. Winkler, H.L. Heyneker, and GA. Vehar, Functional role of proteolytic cleavage at arginine-275 of human tissue-type plasminogen activator as assessed by site-directed mutagenesis. Biochemistry 26: 338 (1987).PubMedCrossRefGoogle Scholar
  43. 43.
    L.C. Petersen, M. Johannessen, D. Foster, A. Kumar, and E. Mulvihill, The effect of polymerised fibrin on the catalytic activities of one-chain tissue-type plasminogen activator as revealed by an analogue resistant to plasmin cleavage. Biochim. Biophys. Acta 952: 245 (1988).Google Scholar
  44. 44.
    JA. Boose, E. Kuismanen, R. Gerard, J. Sambrook, and M.J. Gething, The single chain form of tissue-type plasminogen activator has catalytic activity: studies with a mutant enzyme that lacks the cleavage site. Biochemistry 28: 635 (1989).PubMedCrossRefGoogle Scholar
  45. 45.
    L.C. Petersen, E. Boel, M. Johannessen, and D. Foster, Possible involvement of a lysine residue in establishing the charge relay system responsible for one chain t-PA. Tbromb. Haemost. 62: 322 (abs.) (1989).Google Scholar
  46. 46.
    P. Wallén, G. Pohl, N. Bergsdorf, M. Rânby, T. Ny, and H. Jornvall, Purification and characterization of a melanoma cell plasminogen activator. Eur. J. Biochem. 132: 681 (1983).Google Scholar
  47. 47.
    N. Haigwood, E.P. Paques, G. Mullenbach, G. Moore, L. Desjardins, and A. Tabrizi, Improvement of t-PA properties by means of site directed mutagenesis. Thromb. Haemost. 58: 286 (Abstract 1042 ) (1987).Google Scholar
  48. 48.
    A. Heckel, and K.M. Hasselbach, Prediction of the 3-Dimensional structure of the enzymatic domain of t-PA. J. Computer-Aided. Mol. Des. 2: 7 (1988).Google Scholar
  49. 49.
    R. Carrell, and D.R. Boswell, Serpins: The superfamily of plasma serine proteinase inhibitors, in: “Proteinase inhibitors” Barrell, A, and Salvesen, G. (eds.) Elsevier Publishing Co., Amsterdam p 403 (1986).Google Scholar
  50. 50.
    K.O. Kruithof, G. Tran-Tang, A. Ransijn, and F. Bachmann, Demonstration of a fast-acting inhibitor of plasminogen activators in human plasma. Blood 64: 907 (1984).PubMedGoogle Scholar
  51. 51.
    A.J. Van Zonneveld, H. Veerman, M.E. MacDonald, JA. Van Mourik, and H. Pannekoek, On the structure and function of human tissue-type plasminogen activator. J. Cell. Biochem. 32: 169 (1987).Google Scholar
  52. 52.
    J.C. Monge, C.L. Lucore, E.TA. Fry, B.E. Sobel, and J.J. Biladello, Characterization of interaction of active-site serine mutants of tissue-type plasminogen activator with plasminogen activator inhibitor-1. J. Biol. Chem. 264: 10922 (1989).Google Scholar
  53. 53.
    J. Chmielewska, M. Rânby, and B. Wiman, Kinetics of the inhibitor of plasminogen activators by the plasminogen-activator inhibitor. Biochem. J. 251: 327 (1988).Google Scholar
  54. 54.
    S. Thorsen, M. Philips, J. Selmer, I. Lecander, and B. Asted, Kinetics of inhibitor of tissue-type and urokinase-type plasminogen activator by plasminogen-activator inhibitor type 1 and type 2. Eur. J. Biochem. 175: 33 (1988).Google Scholar
  55. 55.
    E.L. Madison, E.J. Goldsmith, R.D. Gerard, M.J.H. Gething, and J.F. Sambrook, Serpin resistant mutants of human tissue-type plasminogen activator. Nature 339: 721 (1989).PubMedCrossRefGoogle Scholar
  56. 56.
    M. R$nby, Studies on the kinetics of plasminogen activator by tissue plasminogen activator. Biochim. Biophys. Acta 704: 461 (1982).CrossRefGoogle Scholar
  57. 57.
    L. Sottrup-Jensen, H. Klaeys, M. Zajdel, T.E. Petersen, and S. Magnusson, The primary structure of human plasminogen: isolation of two lysine-binding fragments and one “mini”-plasminogen (M.W.38000) by elastase-catalysed-specific limited proteolysis, in: “Progress in Chemical Fibrinolysis and Thrombolysis”. Davidson, J.F., Rowan, R.M., Smama, M.M. and Desnoyers, P.C. (Raven, New York) 3: 191 (1978).Google Scholar
  58. 58.
    I. Sekiguchi, M. Fukada, and S.I. Hakamori, Domain structure of hamster plasma fibronectin. J. Biol. Chem. 256: 6452 (1981).Google Scholar
  59. 59.
    T.E. Petersen, H.C. Thögersen, K. Skorstengaard, K. Vibepedersen, R. Sahl, L. Sottrup-Jensen, and S. Magnussen, Partial primary structure of bovine plasma fibronectin: three types of internal homologies. Proc. Natl. Acad. Sci. USA 80: 137 (1983).Google Scholar
  60. 60.
    A. Ichinose, K. Takoi, and K. Fujikawa, Localization of the binding site of tissue-type plasminogen to fibrin. J. Clin. Invest. 78: 163 (1986).Google Scholar
  61. 61.
    J.M. Verheijen, M.P.M. Caspers, G.T.G. Chang, GA.W. de Munk, P.H. Pouwels, B.E. Enger-Valk, Sites in tissue-type plasminogen activator involved in the interaction with fibrin, plasminogen and low molecular weight ligands. EMBO J. 5: 3525 (1986).PubMedGoogle Scholar
  62. 62.
    R.F. Doolittle, Fibrinogen and fibrin. Sci. Amer. 245(6): 92 (1981).Google Scholar
  63. 63.
    M.J. Gething, B. Adler, JA. Boose, R.D. Gerard, E.L. Madison, D. McGookey, S. Meldell, L.M. Roman, and J. Sambrook, Variants of human tissue-type plasminogen activator that lack specific structual domains of the heavy chain. EMBO J. 7: 2731 (1988).PubMedGoogle Scholar
  64. 64.
    L. Erickson, P.W. Bergum, E.W. Hubert, N.Y. Theriault, E.F. Rehberg, D.P. Palermo, GA.W. De Munk, J.H. Verheijen, and K.R. Marotti, Enhancements and inhibition of the activity of recombinant analogs of tissue plasminogen activator. Thromb. Haemost. 58: 287 (Abstract 1045 ) (1987).Google Scholar
  65. 65.
    G.R. Larsen, K. Henson, and Y. Blue, Variants of human tissue-type plasminogen activator: fibrin binding, fibrinolytic and fibrinogenolytic characterization of genetic variants lacking the fibronectin fmger-like and/or the epidermal growth factor domains. J. Biol. Chem. 263: 1023 (1988).PubMedGoogle Scholar
  66. 66.
    S. Cleary, M.G. Mulkerrin, and R.F. Kelley, Purification and characterization of tissue-plaminogen activator kringle-2 domain expressed in Escherichia Coli. Biochemistry 28: 1884 (1988).CrossRefGoogle Scholar
  67. 67.
    S. Urano, A.R. Metzger, and F.J. Castellino, Plasmin-mediated fibrinolysis by variant recombinant tissue plasminogen activators. Proc. Natl. Acad. Sci. USA 86: 2568 (1989).Google Scholar
  68. 68.
    C. De Vries, H. Veerman, and H. Pannekoek, Identification of the domains of tissue-type plasminogen activator involved in the augmented binding to fibrin after limited digestion with plasmin. J. Biol. Chem. 264: 12604 (1989).Google Scholar
  69. 69.
    GA.W. De Munk, M.P.M. Caspers, G.T.G. Chang, P.H. Pouwels, B.E. Enger-Valk, and J.H. Verheijen, Binding of tissue-type plasminogen activator to lysine, lysine analogues and fibrin fragments. Biochemistry 28: 7318 (1989).PubMedCrossRefGoogle Scholar
  70. 70.
    A. Tulinsky, C.H. Park, B. Mao, and M. Llinds, Lysine/fibrine binding sites of kringles modeled after the structure of kringle I of prothrombin. Proteins 3: 85 (1988).Google Scholar
  71. 71.
    U. Christensen, The AH-site of plasminogen and two C-terminal fragments: a weak lysine-binding site preferring ligands not carrying a free carboxylate function. Biochem. J. 223: 413 (1984).Google Scholar
  72. 72.
    E. Suenson, O. Lutzen, and S. Thorsen, Initial plasmin-degradation of fibrin as the basis of a positive feed back mechanism in fibrinolysis. Eur. J. Biochem. 140: 513 (1984).Google Scholar
  73. 73.
    B. Norrman, P. Wallén, and M. Ranby, Fibrinolysis mediated by tissue plasminogen activator: disclosure of a kinetic transition. Eur. J. Biochem. 149: 193 (1985).Google Scholar
  74. 74.
    D.L. Higgins, and GA. Vehar, Interaction of one-chain and two chain tissue plasminogen activator with intact and plasmin-degrated fibrin. Biochemistry 26: 7786 (1987).Google Scholar
  75. 75.
    J. Krause, Catabolisme of t-PA, its variants, mutants and hybrids. Fibrinolysis 2: 133 (1988).Google Scholar
  76. 76.
    D.C. Rijken, and J.J. Emeis, Clearance of the heavy and light polypeptide chains of human tissue-type plasminogen activator in rats. Biochem. J. 238: 643 (1986).Google Scholar
  77. 77.
    J. Kuiper, M. Otter, D.C. Rijken, and T.J.C. Van Berkel, Characterization of the interaction in vivo of tissue-type plasminogen activator with liver cells. J. Biol. Chem. 263: 18220 (1988).Google Scholar
  78. 78.
    C. Bakhit, D. Lewis, R. Billings, and B. Malfroy, Cellular catabolism of recombinant tissue-type plasminogen activator. J. Biol. Chem. 262: 8716 (1987).Google Scholar
  79. 79.
    A. Hotchkiss, C.J. Refmo, C.K. Leonard, J.V. O’Connor, C. Crowley, J. McCabe, K. Tate, G. Nakamura, D. Powers, A. Levinson, M. Mohler, and M.W. Spellman, The influence of carbohydrate structure on the clearance of recombinant tissue-type plasminogen activator. Thromb. Haemostas. 60: 255 (1988).Google Scholar
  80. 80.
    P. Tanswell, M. Schlüter, and J. Krause, Pharmacokinetics and Isolated liver perfusion of carbohydrate modified recombinant tissue-type plasminogen activator. Fibrinolysis 3: 79 (1989).CrossRefGoogle Scholar
  81. D.P. Beebe, and D.L. Aronson, Turnover of t-PA in rabbits influence of carbohydrate moieties. Thromb. Res. 51: 11 (1988).Google Scholar
  82. 82.
    D. Lau, G. Kuzma, C.M. Wei, D.J. Livingston, and N. Hsiung, A modified human tissue plasminogen activator with extended half-life in vivo. Biotechnology 5: 953 (1987).CrossRefGoogle Scholar
  83. 83.
    G.R. Larsen, M. Metzger, K. Henson, Y. Blue, and P. Horgan, Pharmaco kinetic and distribution analysis of variants forms of tissue-type plasminogen activator with prolonged clearance in rat. Blood 73: 1842 (1989).PubMedGoogle Scholar
  84. 84.
    M.J. Browne, J.E. Carey, C.G. Chapman, A.W.R. Tyrrell, C. Entwisle, M.P. Lawrence, B. Reavy, I. Dodd, A. Esmail, and J.H. Robinson, A tissue-type plasminogen activator mutant with prolonged clearance in vivo. J. Biol. Chem. 263: 1599 (1987).Google Scholar
  85. 85.
    I. Dodd, B. Nunn, and J.H. Robinson, Isolation, identification and pharmacokinetic properties of human tissue-type plasminogen activator species: possible localisation of a clearance recognition site. Thromb. Haemostas. 59: 523 (1988).Google Scholar
  86. 86.
    N.K. Kalyan, S.G. Lee, J. Wilhelm, K.P. Fu, W.T. Hum, R. Rappaport, R.W. Hartzell, C. Urbano, and P.P. Hung, Structure-function analysis with tissue-type plasminogen activator (t-PA): Effect of deletion of NH2-terminal domains on its biochemical and biological properties. J. Biol. Chem. 263: 3971 (1988).Google Scholar
  87. 87.
    D. Collen, J.M. Stassen, and G. Larsen, Pharmacokinetics and thrombolytic properties of deletion mutants of human tissue-type plasminogen activator in rabbit. Blood 71: 216 (1988).PubMedGoogle Scholar
  88. 88.
    K.P. Fu, S. Lee, W.T. Hum, N. Kalyan, R. Rappaport, N. Hetzel, and P.P. Hung, Disposition of a novel recombinant tissue plasminogen activator, 2–89 t-PA, in mice. Thromb. Res. 50: 33 (1988).Google Scholar
  89. 89.
    T.D. Ahern, G.E. Morris, KM. Barone, P.G. Horgan, L.B. Angus, KS. Henson, P.R. Langer-Safer, and G.R. Larsen, Distinguishing the sites in the amino terminal region of tissue-type plasminogen activator (t-PA) required for efficient fibrinolytic activity and rapid clearance from the circulation. Fibrinolysis 3 Suppl. 1: 5 (1989).Google Scholar
  90. 90.
    M.J. Gething, J. Sambrook, and D. McGookey, Addition of an oligosaccharide side-chain at an ectopic site on the EGF-like domain of t-PA prevents binding to specific receptors on hepatic cells. Fibrinolysis 3 Suppl. 1: 19 (1989).Google Scholar
  91. 91.
    PA. Morton, DA. Owensby, B.E. Sobel, and A.L. Schwartz, Catabolism of tissue-type plasminogen activator by the human hepatoma cell line hep G2. J. Biol. Chem. 264: 7228 (1989).Google Scholar
  92. 92.
    DA. Owensby, B.E. Sobel, and A.L. Schwartz, Receptor-mediated endocytosis of tissue-type plasminogen activator by the human hepatoma cell line hep G2. J. Biol. Chem. 263: 10587 (1988).Google Scholar
  93. 93.
    R. Radcliffe, and T. Heinze, Stimulation of tissue-type plasminogen activator by denatured proteins and fibrin clots. A possible additional role for plasminogen activator? Arch. Biochem. Biophys. Acta 211: 750 (1981).Google Scholar
  94. 94.
    R.L. Silverstein, R.L. Nachman, L.L.K. Leung, and P.C. Harpel, Activation of immobilized plasminogen by tissue activator. J. Biol. Chem. 260: 10346 (1985).Google Scholar
  95. 95.
    L. Banyai, and L. Patthy, Importance of intramolecular interactions in the control of the fibrin affinity and activation. J. Biol. Chem. 259: 6466 (1984).Google Scholar
  96. 96.
    P.C. Harpel, R. Sullivan, and T.S. Chang, Binding and activation of plasminogen on immobilized Immunoglobulin G. J. Biol. Chem. 264: 616 (1988).Google Scholar
  97. 97.
    P. Bosma, D.C. Rijken, and W. Nieuwenhuizen, Binding of tissue-type plasminogen activator to fibrinogen fragments. Eur. J. Biochem. 172: 399 (1988).Google Scholar
  98. 98.
    P. Andrade-Gordon, and S. Strickland, Interaction of heparin with plasminogen activators and plasminogen: effects on the activation of plasminogen. Biochemistry 25: 4033 (1986).PubMedCrossRefGoogle Scholar
  99. 99.
    E.P. Paques, HA. Stöhr, and N. Heimburger, Study on the mechanism of action of heparin and related substances on the fibrinolytic system: relationship between plasminogen activator and heparin. Thromb. Res. 42: 797 (1986).Google Scholar
  100. 100.
    S. Soeda, M. Kakiki, H. Shimeno, and A. Nagamatsu, Localization of the binding sites of pocine tissue-type plasminogen activator and plasminogen to heparin. Biochem. Biophys. Acta 916: 279 (1987).Google Scholar
  101. 101.
    R. Fears, Kinetic studies on the effect of heparin and fibrin of plasminogen activators. Biochem. J. 249: 7781 (1988).Google Scholar
  102. 102.
    J.M. Stassen, I. Juhan-Vague, M.C. Alessi, F. De Cock, and D. Collen, Potentiation by heparin fragments of thrombolysis induced with human tissue-type plasminogen activator on human single-chain urokinase-type plasminogen activators. Thromb. Haemostas. 58: 947 (1987).Google Scholar
  103. 103.
    P.L. Stein, A.J. Van Zonneveld, H. Pannekoek, and S. Strickland, Structural domains of human tissue-type plasminogen activator that confer stimulation by heparin. J. Biol. Chem. 264: in press (1989).Google Scholar
  104. 104.
    E.M. Salonen, O. Saksela, T. Vartio, A. Vaheri, L.S. Nielsen, and J. Zeuthen, Plasminogen and tissue-type plasminogen activator bind to immobilised fibronectin J. Biol. Chem. 260: 12302 (1985).Google Scholar
  105. 105.
    S. Barlati, E. Marchina, D. Bellotti, and G. De Petro, Interaction of plasminogen activation with fibronectin fragments in vitro and in vivo. Fibrinolysis 3 Suppl.l: 5 (1989).Google Scholar
  106. 106.
    J.W. Lawler, H.S. Slayter, and J.E. Coligan, Isolation and characterization of a high molecular weight glycoprotein from human blood platelets. J. Biol. Chem. 283: 8609 (1978).Google Scholar
  107. 107.
    H. Haupt, and N. Heimburger, Humanserumproteine mit hoher affmitat zu carboxymethylcellulose I. Hoppe-Seyler’s Z. Physiol. Chem. 353: 1125 (1972).CrossRefGoogle Scholar
  108. 108.
    R.L. Silverstein, P.C. Harpel, and R.L. Nachman, Tissue plasminogen activator and urokinase enhance the binding of plasminogen to thrombospondin. J. Biol. Chem. 261: 9959 (1986).Google Scholar
  109. 109.
    K.S. O’Shea, and V.M. Dixit, Unique distribution of the extra cellular matrix component thrombospondin in the developing mouse embryo. J. Cell. Biol. 107: 2737 (1988).Google Scholar
  110. 110.
    A. Krystosek, and N.W. Seeds, Plasminogen activator secretion by granule neurons in cultures of developing cerebellum. Proc. Natl. Acad. Sci. USA 78: 7810 (1981).PubMedCrossRefGoogle Scholar
  111. 111.
    P.H. Patterson, On the role of protease, their inhibitors and the extracellular matrix in promoting neurite outgrouth. J. Physiol. 80: 207 (1985).Google Scholar
  112. 112.
    A. Baron-Van Evercooren, P. Leprince, B. Rogister, P.P. Lefebvre, P. Delrée, I. Selak, and G. Moonen, Plasminogen activators in developing peripheral nervous system, cellular origin and mitogenic effect. Dev. Brain Res. 36: 101 (1987).Google Scholar
  113. 113.
    TA. Bicsak, and A.J.W. Hsueh, Rat oocyte tissue-plasminogen activator is a catalytically efficient enzyme in the absence of fibrin. J. Biol. Chem. 264: 630 (1989).Google Scholar
  114. 114.
    P. Machovich, and W.G. Owen, A factor from endothelium facilities activation of plasminogen by tissue plasminogen activator. Enzyme 40: 109 (1988).PubMedGoogle Scholar
  115. 115.
    LA. Miles, and E.F. Plow, Plasminogen receptors: ubiquitous sites for cellular regulation of fibrinolysis. Fibrinolysis 2: 61 (1988).Google Scholar
  116. 116.
    D.P. Beebe, Binding of tissues plasminogen activator to human umbilical vein endothelial cells. Thromb. Res. 47: 241 (1987).Google Scholar
  117. 117.
    KA. Hajjar, N.M. Hamel, P.C. Harpel, and R.L. Nachman, Binding of tissue plasminogen activator to cultured human endothelial cells. J. Clin. Invest. 80: 1712 (1987).Google Scholar
  118. 118.
    E.S. Barnathan, A. Kuo, H. Van der Keyl, K.R. McCrae, G.R. Larsen, and D.B. Cines, Tissue-type plasminogen activator binding to human endothelial cells. J. Biol. Chem. 263: 7792 (1988).Google Scholar
  119. 119.
    K. Deguchi, and S. Shirakawa, Plasminogen activation by tissue-type plasminogen activator in the presence of platelets. Thromb. Res. Suppl. VII: 65 (1988).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Anton Jan Van Zonneveld
    • 1
  • Carlie De Vries
    • 1
  • Hans Pannekoek
    • 1
  1. 1.Department of Molecular Biology Central Laboratory of the NetherlandsRed Cross Blood Transfusion ServiceAK Amsterdamthe Netherlands

Personalised recommendations