A Key Molecule Dictating and Regulating Surface Plasmin Formation : The Receptor for Urokinase Plasminogen Activator

  • Francesco Blasi
  • M. Vittoria Cubellis
  • Ann Louring Roldan
  • Maria Teresa Masucci
  • Niels Behrendt
  • Vincent Ellis
  • Ettore Appella
  • Keld Danø
Part of the NATO ASI Series book series (NSSA, volume 191)


Regulation of cell to cell contacts and of cell migration is thought to require the action of protease systems which are needed to sever the ties that link cells to other cells and to the extracellular matrix, and to overcome barriers like the basement membranes. Since cell migration phenomena occur from gametogenesis through embryonic development to adulthood, and since also many pathological disorders are associated with or require tissue destruction and cell migration, the requirement for extracellular proteolytic enzymes is a very widespread phenomenon, which however has not yet been clearly understood on a molecular biological and biochemical basis.1–3


Plasminogen Activator U937 Cell Plasminogen Activator Inhibitor Plasminogen Activation Urokinase Plasminogen Activator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Reich, Activation of plasminogen: a general mechanism for producing localized extracellular proteolysis, in: “Molecular Basis of biological degradative processes”. R.D. Berlin et al., Eds. New York: Academic Press, p 155 (1978).Google Scholar
  2. K. Dams, PA. Andreasen, J. Grgndahl-Hansen, P. Kristensen, L.S. Nielsen, and L. Shiver, Plasminogen activators, tissue degradation and cancer. Adv. in Cancer Res. 44: 139 (1985).Google Scholar
  3. 3.
    F. Blasi, J.D. Vassalli, and K. Dang, Urokinase type plasminogen activator: proenzyme, receptor and inhibitors. J. Cell Biol. 104: 801 (1987).Google Scholar
  4. 4.
    W.H. Beers, S. Strickland, and E. Reich, Ovarian plasminogen activator: relationship to ovulation and hormonal regulation. Cell 6: 387 (1975).CrossRefPubMedGoogle Scholar
  5. 5.
    R. Canipari, and S. Strickland, Plasminogen activator in the rat ovary. Production and gonadotropin regulation of the enzyme in granulosa and thecal cells. J. Biol. Chem. 260: 5121 (1985).Google Scholar
  6. 6.
    A.J.W. Hsueh, Y.-X. Liu, S. Cajander, X.-R. Peng, K. Dahl, P. Kristensen, and T. Ny, Gonadotropinreleasing hormone induces ovulation in hypophysectomized rats: studies on ovarian tissue-type plasminogen activator activity, messenger ribonucleic acid content, and cellular localization. Endocrinology 122: 1486 (1988).CrossRefPubMedGoogle Scholar
  7. 7.
    JA. Hettle, E.K. Waller, and I.B. Fritz, Hormonal stimulation alters the type of plasminogen activator produced by Sertoli cells. Biol. Reprod. 34: 895 (1986).Google Scholar
  8. 8.
    K.K. Vihko, P. Kristensen, K. Dams, and M. Parvinen, Immunohistochemical localization of urokinase-type plasminogen activator in Sertoli cells and tissue-type plasminogen activator in spermatogenic cells in the rat seminiferous epithelium. Dev. Biol. 125: 150 (1988).Google Scholar
  9. 9.
    S. Strickland, E. Reich, and M.I. Sherman, Plasminogen activator in early embryogenesis: enzyme production by trophoblast and parietal endoderm. Cell 9: 231 (1976).CrossRefPubMedGoogle Scholar
  10. 10.
    S. Strickland, and V. Mandavi, The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell 15: 393 (1978).CrossRefPubMedGoogle Scholar
  11. 11.
    A. Krystosek, and N.W. Seeds, Plasminogen activator release at the neuronal growth cone. Science 213: 1532 (1981).CrossRefPubMedGoogle Scholar
  12. 12.
    A. Krystosek, and N.W. Seeds, Plasminogen activator secretion by granule neurons in cultures of developing cerebellum. Proc. Natl. Acad. Sci. USA 78: 7810 (1981).Google Scholar
  13. 13.
    A. Krystosek, and N.W. Seeds, Peripheral neurons and Schwann cells secrete plasminogen activator. J. Cell Biol. 98: 773 (1984).Google Scholar
  14. 14.
    J.L. Gross, D. Moscatelli, and D.B. Rifkin, Increased capillary endothelial cell protease activity in response to angiogenic stimuli in vitro. Proc. Natl. Acad. Sci. USA 80: 2623 (1983).Google Scholar
  15. 15.
    J. Grgndahl-Hansen, L.R. Lund, E. Ralfkiær, E. Ottevanger, and K. Dang, Urokinase-and tissue-type plasminogen activator in keratinocytes during wound reepitheliali7ation in vivo. J. Invest. Dermatol. 90: 790 (1988).Google Scholar
  16. 16.
    L. Ossowski, D. Biegel, and E. Reich, Mammary plasminogen activator: correlation with involution, hormonal modulation and comparison between normal and neoplastic tissue. Cell 16: 929 (1979).CrossRefPubMedGoogle Scholar
  17. 17.
    L.-I. Larsson, L. Shiver, L.S. Nielsen, J. Grondahl-Hansen, P. Kristensen, and K. Dano, Distribution of urokinase-type plasminogen activator immunoreactivity in the mouse. J. Cell Biol. 98: 894 (1984).Google Scholar
  18. 18.
    N. Busso, J. Huarte, J.-D. Vassalli, A.-P. Sappino, and D. Belin, Plasminogen activators in the mouse mammary gland. Decreased expression during lactation. J. Biol. Chem. 264: 7455 (1989).Google Scholar
  19. 19.
    B.W. Festoff, D. Hantaï, J. Soria, A. Thomaïdis, and C. Soria, Plasminogen activator in mammalian skeletal muscle: characteristics of the effect of denervation on urokinase-like and tissue activator. J. Cell Biol. 103: 1415 (1987).Google Scholar
  20. 20.
    L. Ossowski, and E. Reich, Antibodies to plasminogen activator inhibit human tumor metastasis. Cell 35: 611 (1983).CrossRefPubMedGoogle Scholar
  21. 21.
    V.J. Hearing, L.W. Law, A. Corti, E. Appella, and F. Blasi, Modulation of metastatic potential by cell surface urokinase of murine cells. Cancer Res. 48: 1270 (1988).PubMedGoogle Scholar
  22. 22.
    K. Tryggvason, M. Hoyhtya, and T. Salo, Proteolytic degradation of extracellular matrix in tumor invasion. Biochim. Biophys. Acta 907: 191 (1987).Google Scholar
  23. 23.
    D. Collen, On the regulation and control of fibrinolysis. Thromb. Haemost. 43: 77 (1980).Google Scholar
  24. 24.
    L. Shiver, L.S. Nielsen, R. Stephens, and K. Dan0, Plasminogen activator released as inactive proenzyme from murine cells transformed by sarcoma virus. Eur. J. Biochem. 124: 409 (1982).Google Scholar
  25. 25.
    T.-C. Wun, L. Ossowski, and E. Reich, A proenzyme form of human urokinase. J. Biol. Chem. 257: 7262 (1982).Google Scholar
  26. 26.
    L.S. Nielsen, J.G. Hansen, L. Shiver, E.L. Wilson, K. Kaltoft, J. Zeuthen, and K. Dans, Purification of zymogen to plasminogen activator from human glioblastoma cells by affinity chromatography with monoclonal antibody. Biochemistry 21: 6410 (1982).CrossRefPubMedGoogle Scholar
  27. 27.
    Y. Eeeckhout, and G. Vaes, Further studies on the activation of procollagenase, the latent precursor of bone collagenase. Biochem. J. 166: 21 (1977).Google Scholar
  28. O.Saksela, and D.B. Rifkin, Cell-associated plasminogen activation: Regulation and physiological functions. Ann. Rev. Cell Biol. 4 93 (1988).Google Scholar
  29. 29.
    F. Blasi, and M.P. Stoppeli, Molecular basis for plasminogen activation, surface proteolysis and their relation to cancer, in: “Growth Regulation and Carcinogenesis” W.R. Paukowits, Ed., CRC Uniscience (1989).Google Scholar
  30. 30.
    P. Verde, M.P. Stoppelli, P. Galeffi, P.P. DiNocera and F. Blasi, Identification and primary sequence of an unspliced human urokinase poly(A)+ RNA. Proc. Natl. Acad. Sci. USA 81: 4727 (1984).Google Scholar
  31. 31.
    R. Pannell, and V. Gurewich, Activation of plasminogen by single-chain urokinase or by two-chain urokinase- A demonstration that single-chain urokinase has a low catalytic activity (pro-urokinase). Blood 69: 22 (1987).PubMedGoogle Scholar
  32. 32.
    V. Ellis, M.F. Scully, and V.V. Kakkar, Plasminogen activation by single chain urokinase in functional isolation. J. Biol. Chem. 262: 14998 (1987).Google Scholar
  33. 33.
    L.C. Petersen, L.R. Lund, L.S. Nielsen, K. Dano, and L.S. Skriver, One-chain urokinase-type plasminogen activator is a proenzyme with little or no intrinsic activity. J. Biol. Chem. 263: 11189 (1988).PubMedGoogle Scholar
  34. 34.
    T. Urano, V.S. de Serrano, P. Gaffney, and F.J. Castellino, The activation of human (Glus) plasminogen by human single-chain urokinase. Arch. Biochem. Biophys. 264: 222 (1988).Google Scholar
  35. 35.
    K. Dan{, N. Behrendt, L.R. Lund, E. Ronne, J. Pöllänen, E.-M. Salonen, R W Stephens, H. Tapiovaara, and A. Vaheri, Cell-surface plasminogen activation, in: “Cancer Metastasis” V. Schirrmacher and R. Schwartz-Albiez, eds. Springer-Verlag p 98 (1989).Google Scholar
  36. 36.
    D.L. Eaton, R.W. Scott, and J.B. Baker, Purification of human fibroblast urokinase proenzyme and analysis of its regulation by proteases and protease nexin. J. Biol. Chem. 259: 6241 (1984).Google Scholar
  37. 37.
    J.D. Vassalli, D. Baccino, and D. Belin, A cellular binding site for the 55,000 Mr form of the human plasminogen activator, urokinase. J. Cell Biol. 100: 86 (1985).Google Scholar
  38. 38.
    PA. Andreasen, L.S. Nielsen, P. Kristensen, J. Grondahl-Hansen, L. Shiver, and K. Dan0, Plasminogen activator inhibitor from human fibrosarcoma cells binds urokinase-type plasminogen activator, but not its proenzyme. J. Biol. Chem. 261: 7644 (1986).PubMedGoogle Scholar
  39. 39.
    V. Gurewich, R. Pannell, S. Louie, P. Kelley, R.L. Suddith, and R. Greenlee, Effective and fibrin-specific clot lysis by a zymogen precursor form of urokinase (pro-urokinase). A study in vitro and in two animal species. J. Clin. Invest. 73: 1731 (1984).Google Scholar
  40. 40.
    S. Kasai, H. Arimura, M. Nishida, and T. Suyama, Proteolytic cleavage of single-chain pro-urokinase induces conformational change which follows activation of the zymogen and reduction of its high affinity for fibrin. J. Biol. Chem. 260: 12377 (1985).Google Scholar
  41. 41.
    WA. Guenzler, G.J. Steffens, F. Otting, G. Buse, and L. Flohé, Structural relationship between human high and low molecular mass urokinase. Hoppe-Seyler’s Z. Physiol. Chem. 363: 133 (1982).Google Scholar
  42. 42.
    M.P. Stoppelli, A. Corti, A. Soffientini, G. Cassani, F. Blasi, and R.K. Assoian, Differentiation enhanced binding of the aminoterminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes. Proc. Natl. Acad. Sci. 82: 4939 (1985).Google Scholar
  43. 43.
    A. Estreicher, A. Wohlwend, D. Belin, and J.D. Vassalli, Characterization of the cellular binding site for the urokinase-type plasminogen activator. J. Biol. Chem. 264: 1180 (1989).Google Scholar
  44. 44.
    E. Appella, EA. Robinson, S.J. Ulrich, M.P. Stoppelli, A. Corti, G. Cassani, and F. Blasi, The receptor binding sequence of urokinase. J. Biol. Chem. 262: 4437 (1987).Google Scholar
  45. 45.
    F. Blasi, Surface receptors for urokinase plasminogen activator. Fibrinolysis 2: 73 (1988).Google Scholar
  46. 46.
    F. Robbiati, M.L. Nolli, E. Sarubbi, A. Soffientini, M.P. Stoppelli, F. Parenti, G. Cassani, and F. Blasi, A recombinant prourokinase mutant missing the growth factor like domain does not bind to the urokinase receptor. Submitted for publication.Google Scholar
  47. 47.
    E. Appella, I.T. Weber, and F. Blasi, Structure and function of the growth factor-like regions in proteins. FEBS Lett. 231: 1 (1988).CrossRefPubMedGoogle Scholar
  48. 48.
    L.S. Nielsen, G.M. Kellerman, N. Behrendt, R. Picone, K. Dana, and F. Blasi, A 55,000–60,000 Mr receptor protein for urokinase. J. Biol. Chem. 263: 2358 (1988).Google Scholar
  49. 49.
    N. Behrendt, E. Ronne, M. Ploug, T. Petri, D. Lober, L.S. Nielsen, W.-D. Schleuning, F. Blasi, E. Appella, and K. Dano, The human receptor for urokinase plasminogen activator. N-terminal amino acid sequence and glycosylation variants. Submitted for publication.Google Scholar
  50. 50.
    A.L. Roldan, M.V. Cubellis, M.T. Masucci, N. Behrendt, L.R. Lund, K. Dano, E. Appella, and F. Blasi, Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell-surface plasmin-dependent proteolysis. Submitted for publication.Google Scholar
  51. 51.
    J. Pöllänen, O. Saksela, E.M. Salonen, P. Andreasen, LA. Nielsen, K. Danp, and A. Vaheri, Distinct localizations of urokinase-type plasminogen activator and its type 1 inhibitor under cultured human fibroblasts and sarcoma cells J. Cell BioL 104: 1085 (1987).Google Scholar
  52. 52.
    J. Pöllänen, K. Hedman, L.S. Nielsen, K. Dan0, and A. Vaheri, Ultrastructural localization of plasma membrane-associated urokinase-type plasminogen activator. J. Cell Biol. 106: 87 (1988).Google Scholar
  53. 53.
    C. Hébert, and J.B. Baker, Linkage of extracellular plasminogen activator to the fibroblast cytoskeleton: colocalization of cell surface urokinase with vinculin. J. Cell Biol. 106: 1241 (1988).Google Scholar
  54. 54.
    R.W. Stephens, J. Pöllänen, H. Tapiovaara, K.-C. Leung, P.-S. Sim, E.M. Salonen, E. Ronne, N. Behrendt, K. Dano, and A. Vaheri, Activation of pro-urokinase and plasminogen on human sarcoma cells: a proteolytic cascade with surface-bound reactants. J. Cell Biol. 108: 1987 (1989).Google Scholar
  55. 55.
    W.F. Glass, RA. Radnik, JA. Garoni, and J.I. Kreisberg, Urokinase-dependent adhesion loss and shape change after cyclic adenosine monophosphate elevation in cultured rat mesangial cells. J. Clin. Invest. 82: 1992 (1988).Google Scholar
  56. 56.
    LA. Miles, and E.F. Plow, Plasminogen receptors: ubiquitous sites for cellular regulation fibrinolysis. Fibrinolysis 2: 61 (1988).Google Scholar
  57. 57.
    K. Dano,, N. Behrendt, E. Ronne, V. Ellis, and F. Blasi, The urokinase receptor and regulation of pericellular plasminogen activation, in:“Molecular Biology of the Cardiovascular System” UCLA Symposium on Molecular and Cellular Biology, New Series, vol. 132, R. Roberts and J. Sambrook, Eds., Alan R. Liss Inc., New York, (1989) in press.Google Scholar
  58. 58.
    M.V. Cubellis, M.L. Nolli, G. Cassani, and F. Blasi, Binding of single chain prourokinase to the urokinase receptor of human U937 cells. J. Biol. Chem. 261: 15819 (1986).Google Scholar
  59. 59.
    E.F. Plow, D.E. Freaney, J. Plescia, and LA. Miles, The plasminogen system and cell surfaces: evidence for plasminogen and urokinase receptors on the same cell type. J. Cell Biol. 103: 2411 (1986).Google Scholar
  60. 60.
    V. Ellis, M.F. Scully, and V.V. Kakkar, Plasminogen activation initiated by single chain urokinase-type plasminogen activator. Potentiation by U937 monocytes. J. Biol. Chem. 264: 2185 (1989).Google Scholar
  61. 61.
    J. Pöllänen, Down-regulation of plasmin receptors on human sarcoma cells by glucocorticoids. J. Biol. Chem. 264: 5632 (1989).Google Scholar
  62. 62.
    M.V. Cubellis, PA. Andreasen, P. Ragno, M. Mayer, K. Danp, and F. Blasi, Accessibility of receptor-bound urokinase to type-1 plasminogen activator inhibitor. Proc. Natl. Acad. Sci. USA 86: 4828 (1989).Google Scholar
  63. 63.
    K. Dams, PA. Andreasen, N. Behrendt, J. Grondahl-Hansen, P. Kristensen, and L.R. Lund, Regulation of the urokinase pathway of plasminogen activation, in: “Development and function of the Reproductive Organs” vol. II M. Parvinen, I. Huhtaniemi and L.J. Pelliniemi, eds. Ares-Serono Symposia, Rome p 259 (1988).Google Scholar
  64. 64.
    P. Verde, S. Boast, A. Franzé, F. Robbiati, and F. Blasi, An upstream enhancer and a negative element in the 5’ flanking region of the human urokinase plasminogen activator gene. Nucl. Acid Res. 16: 10699 (1988).CrossRefGoogle Scholar
  65. 65.
    R. Picone, E. Kajtaniak, L.S. Nielsen, N. Behrendt, M.R. Mastronicola, M.V. Cubellis, M.P. Stoppelli, K. Dano, and F. Blasi, Regulation of urokinase receptor in monocyte-like U937 by phorbol ester phorbol myristate acetate. J. Cell Biol. 108: 693 (1989).Google Scholar
  66. 66.
    D. Boyd, G. Florent, P. Kim, and M. Brattain, Determination of the level of urokinase and its receptor in human colon carcinoma cell lines. Cancer Res. 48: 3112 (1988).PubMedGoogle Scholar
  67. 67.
    PA. Andreasen, B. Georg, L.R. Lund, A. Riccio, and S.N. Stacey, Plasminogen activator inhibitors: hormonally regulated serpins. Molec. Cell Endocrinol in press.Google Scholar
  68. 68.
    M.P. Stoppelli, C. Tacchetti, M.V. Cubellis, A. Corti, V.J. Hearing, G. Cassani, E. Appella, and F. Blasi, Autocrine saturation of the urokinase receptors. Cell 45: 675 (1986).CrossRefPubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Francesco Blasi
    • 3
  • M. Vittoria Cubellis
    • 3
  • Ann Louring Roldan
    • 3
  • Maria Teresa Masucci
    • 3
  • Niels Behrendt
    • 1
  • Vincent Ellis
    • 1
  • Ettore Appella
    • 2
  • Keld Danø
    • 1
  1. 1.Finsen Laboratory, RigshospitaletCopenhagen ØDenmark
  2. 2.Laboratory of Cell BiologyNCI, National Institutes of HealthBethesdaUSA
  3. 3.Institute of MicrobiologyUniversity of CopenhagenCopenhagen KDenmark

Personalised recommendations