A Serine Protease Inhibitor Domain Encoded Within the Alzheimer Disease-Associated Amyloid ß-Protein Precursor Gene

  • Rudolph E. Tanzi
Part of the NATO ASI Series book series (NSSA, volume 191)


A crucial event in the pathogenesis of AD involves the aggregation of a 4.2 kiloDalton (kd) hydrophobic peptide referred to as the amyloid ß- protein (ABP) into insoluble extracellular proteinaceous fibers. These aggregates take the form of both senile (neuritic) plaques (SP) and cerebrovascular amyloid (CVA) deposits.1 Besides AD, amyloid deposits also occur in Dutch cerebral amyloidosis,2 older patients with Down syndrome (DS; trisomy 21), and to a limited extent in normal aged individuals. The formation of amyloid plaques and blood vessel CVA deposits appears to correlate well, although not perfectly, with the degree of dementia in AD patients.3 Whether amyloidogenesis is a primary or secondary event in AD-related neuropathology is not known. However, given the association between neuronal cell death and the presence of amyloid in AD and DS, multiple laboratories have focused their efforts on delineating the mechanism by which the 40 amino acid peptide, ABP, is generated and subsequently aggregated into insoluble amyloid fibrils. ABP is derived from a much larger precursor protein (APP) encoded by a gene located on chromosome 21.4–7 This precursor protein may consist of 695, 751, or 770 amino acids depending on the alternate splicing of two exons of 168 and 57 basepairs.58–10 The larger exon encodes a functional serine protease inhibitor domain in the Kunitz family. The effect of this inhibitor on the proteolytic processing of APP and the generation of amyloid is not yet known.


Down Syndrome Trypsin Inhibitory Activity Amyloid Protein Precursor mRNA Kunitz Type Cerebrovascular Amyloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.G. Glenner, and C.W. Wong, Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun., 120: 885890 (1984).Google Scholar
  2. 2.
    S.G. van Duinen, E.M. Castano, F. Prelli, G.T. Bots, W. Luyendijk, and B. Frangione, Hereditary cerebral hemmorrhage with amyloidosis in patients of Dutch origin is related to Alzheimer disease. Proc, Nat Acad Sci (USA.), 84: 5991–5994 (1987).CrossRefGoogle Scholar
  3. 3.
    G. Blessed, B.E. Tomlinson, and M. Roth, The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Brit. J. Psychiatry, 114: 797–811 (1968).CrossRefGoogle Scholar
  4. 4.
    D. Goldgaber, J.I. Lerman, O.W. McBride, U. Saffiotti, D.C. and Gajdusek, Characterization and chromosomal localization of a cDNA encoding brain amyloid of fibril protein. Science, 235: 877880 (1987).Google Scholar
  5. 5.
    J. Kang, H.G. Lemaire, A. Unterbeck, J. Salbaum, L. Masters, K.H. Grzeschik, G. Multhaup, K. Beyreuther, and B. Muller-Hill, The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature, 325: 733–736 (1987).CrossRefPubMedGoogle Scholar
  6. 6.
    N.K. Robakis, N. Ramakrishna, G. Wolfe, and H.M. Wisniewski, Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides. Proc. Nat. Acad. Sci. (U.SA), 84: 4190–4194 (1987a).CrossRefGoogle Scholar
  7. 7.
    R.E. Tanzi, J F Gusella, P.C. Watkins, GA. Bruns, P. St. George-Hyslop, M.L. VanKeuren, S.P. Patterson, D.M. Kurnit, and R.L. Neve, Amyloid 9 protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science, 235: 880–884 (1987a).CrossRefPubMedGoogle Scholar
  8. 8.
    N. Kitaguchi, Y. Takahashi, Y. Tokushima, S. Shiojiri, H. Ito, Novel precursor of Alzheimer’s disease shows protease inhibitory activity. Nature, 331: 530–532 (1988).CrossRefPubMedGoogle Scholar
  9. 9.
    P. Ponte, P. Gonzalez-DeWhitt, J. Schilling, J. Miller, D. Hsu, B. Greenberg, K. Davis, W. Wallace, I. Lieberburg, F. Fuller, and B. Cordell, A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature, 331: 525–527 (1988).CrossRefPubMedGoogle Scholar
  10. 10.
    R.E. Tanzi, A I McClatchey, E.D. Lamperti, L. Villa-Komaroff, J.F. Gusella, and R.L. Neve, Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease. Nature, 331: 528–530 (1988).CrossRefPubMedGoogle Scholar
  11. 11.
    D. Patterson, K. Gardiner, F-T. Kao, R. Tanzi, P. Watkins, and J. Gusella, Mapping of the gene encoding the 0-amyloid precursor protein and its relationship to the Down syndrome region of chromosome 21. Proc. Nat. Acad. Sci. (U.S.A.), 85: 8266–8270 (1988).CrossRefGoogle Scholar
  12. 12.
    J.R. Korenberg, R. West, and Pulst S.M., The Alzheimer protein precursor maps to chromosome 21 sub-bands q21.15-q21.2. Neurology (suppl.), 38: 265 (1988).Google Scholar
  13. 13.
    N.D. Robakis, H. M. Wisniewski, E.C. Jenkins, EA. Devine-Gage, G.E. Houck, X.L. Yao, N. Ramakrishna, G. Wolfe, W.P. Silverman, and W.T. Brown, Chromosome 21q21 sublocalization of gene encoding 0-amyloid peptide in cerebral vessels and neuritic (senile) plaques of people with Alzheimer disease and Down syndrome. Lancet ii: 384 (1987b).CrossRefGoogle Scholar
  14. 14.
    M. Podlisney, G. Lee, and D. Selkoe, Gene dosage of the amyloid p precursor protein in Alzheimer’s disease. Science, 238: 669–671 (1987).CrossRefGoogle Scholar
  15. 15.
    P.H. St. George-Hyslop, R.E. Tanzi, R J Polinsky, R.L. Neve, D. Pollen, D. Drachman, J. Grow-don, LA. Cupples, L. Nee, R.H. Myers, D. O’Sullivan, P.C. Watkins, JA. Amos, C.K. Deutsch, J.W. Bodfish, M. Kinsbourne, R.G. Feldman, A. Bruni, L. Amaducci, J-F. Foncin, and J.F. Gusella, Absence of duplication of chromosome 21 genes in familial and sporadic Alzheimer’s disease. Science, 238: 664–666 (1987a).Google Scholar
  16. 16.
    R.E. Tanzi, E D Bird, SA. Latt, and R.L. Neve, The Amyloid p protein gene is not duplicated in brains from patients with Alzheimer’s disease. Science, 238: 666–669 (1987b).Google Scholar
  17. 17.
    P.H. St. George-Hyslop, R.E. Tanzi, R J Polinsky, J.L. Haines, L. Nee, P.C. Watkins, R.H. Myers, R.G. Feldman, D. Pollen, D. Drachman, J. Growdon, A. Bruni, J-F. Foncin, D. Salmon, P. Frommelt, L. Amaducci, S. Sorbi, S. Piacentini, G.D. Stewart, W.J. Hobbs, P.M. Conneally, and J.F. Gusella, The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science, 235: 885–889 (1987b).CrossRefGoogle Scholar
  18. 18.
    R.E. Tanzi, P H St George-Hyslop, J.L. Haines, R.J. Polinsky, L. Nee, J-F. Foncin, R.L. Neve, A.I. McClatchey, P.M. Conneally, and J.F. Gusella, The genetic defect in familial Alzheimer’s disease is not tightly linked to the amyloid 0-protein gene. Nature, 329: 156–157 (1987c).CrossRefPubMedGoogle Scholar
  19. 19.
    A. Weidemann, G. Konig, D. Bunke, P. Fischer, M.J. Salbaum, C. Masters, and K. Beyreuther, Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 Amyloid protein. Cell, 57: 115–126 (1989).CrossRefPubMedGoogle Scholar
  20. 20.
    J.F. Kaumeyer, J.O. Polazzi, and M.P. Kotick, The mRNA for a proteinase inhibitor related to the HI-30 domain of inter-a-trypsin inhibitor also encodes at-microglobulin (protein HC) Nile. Acid Res., 14: 7839–7850 (1986).CrossRefGoogle Scholar
  21. 21.
    E. Wachter, and K. Hochstrasser, Kunitz type proteinase inhibitors derived proteolysis of the Intera-trypsin, IV. Hoppe-Seyler’s Z. PhysioL Chem., 360: 1351–1355 (1981).CrossRefGoogle Scholar
  22. 22.
    C.R. Abraham, D.J. Selkoe, H. Potter, Immunochemical identification of the serine protease inhibitor a1-antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease. Cell, 52: 487–501 (1988).CrossRefPubMedGoogle Scholar
  23. 23.
    W.L. McKeehan, Y. Sakgami, H Hoshi, and KA. McKeehan, Two apparent human endothelial cell growth factors from hepatoma cells are tumor associated protease inhibitors. J. BioL Chem., 261: 5378–5383 (1986).PubMedGoogle Scholar
  24. 24.
    C.W. Pratt, and S.V. Pizzo, In vivo metabolism of inter-a-trypsin inhibitor and its proteinase complexes: Evidence for proteinase transfer to a2- macroglobulin and a1-proteinase inhibitor. Arch. Biochem. Biophys., 248: 587–596 (1986).Google Scholar
  25. 25.
    R.K. Chawla, D.J. Roushe, F.W. Miller, W.R. Vogler, and D.H. Lawson, Abnormal profile of serum proteinase inhibitors in cancer patients. Cancer Res., 44: 2718–2723 (1984).Google Scholar
  26. 26.
    SA. Johnson, G.M. Pasinetti, P.C. May, PA. Ponte, B. Cordell, C.E. Finch, Selective reduction of mRNA for the ß-amyloid precursor protein that lacks a Kunitz-type protease inhibitor motif in cortex from Alzheimer brains. Exp. NeuroL, 102: 264–268 (1988).CrossRefPubMedGoogle Scholar
  27. 27.
    S. Tanaka, S. Nakamura, K. Ueda, M. Kameyama, S. Shiojiri, Y. Takahashi, N. Kitaguchi, and H. Ito, Three types of amyloid protein precursor mRNA in human brain: their differential expression in Alzheimer’s disease. Biochem. Biophys. Res. Commun., 157: 472–479 (1988).CrossRefPubMedGoogle Scholar
  28. 28.
    M.R. Palmert, T.E. Golde, M.L. Cohen, D.M. Kovacs, R.E. Tanzi, J.F. Gusella, M.F. Usiak, L.H. Younkin, and S.G. Younkin, Amyloid protein precursor messenger RNAs: differential expression in Alzheimer’s disease. Science, 241: 1080–1084 (1988).CrossRefPubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Rudolph E. Tanzi
    • 1
  1. 1.The Molecular Neurogenetics LaboratoryMassachusetts General HospitalBostonUSA

Personalised recommendations