Serpins and Brain Tumors: Roles in Pathogenesis

  • Jasti S. Rao
  • Riichiro Suzuki
  • Barry W. Festoff
Part of the NATO ASI Series book series (NSSA, volume 191)


Brain tumors constitute a group of heterogeneous neoplasms. Pathophysiological mechanisms associated with the neoplastic process involve a complex balance of fibrinolytic and coagulation enzymes. The fibrinolytic enzyme system covers a wide spectrum ranging from tumor growth to tumor invasiveness, tumor hemorrhage and tumor host interactions leading to serious coagulopathies and thromboembolic complications.1–4 The primary malignant brain tumors are also rich in fibrinolytic activity and are recognized for their low potential to metastasize, while they invade locally. The low potentiality of brain tumors to metastasize may be due to behavior of enzymes and the overproduction of inhibitors. Tumor spread correlates directly with tumor activation of fibrinolysis and inversely with inhibitors of fibrinolysis. Both proteolysis and anti-proteolytic activity have been associated with primary brain malignancies.


Conditioned Medium Human Brain Tumor Fibrin Plate Protease Nexin Reverse Zymography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Girmann, H. Pees, and G. Schwarze, Immunosuppression by micromolecular fibrinogen degradation products in cancer, Nature 259: 339–401 (1976).CrossRefGoogle Scholar
  2. 2.
    E.F. Plow, D. Freaney, and T.S. Edgington, Inhibition of lymphocyte protein synthesis by fibrinogen-derived peptides, J ImmunoL 128: 1595–1599 (1982).PubMedGoogle Scholar
  3. 3.
    R. Ng, and JA. Kellen, The role of plasminogen activators in metastasis, Med. Hypothesis 10: 291293 (1983).Google Scholar
  4. 4.
    NA. Booth, R. Bennett, and G. Wijngaards, A new lifelong hemorrhage disorder due to excess plasminogen activator, Blood 61: 269–275 (1983).Google Scholar
  5. 5.
    A. Carrel, and M.T. Burrows, Cultivation in vitro of malignant tumors, J. Exp. Med. 13: 571–575 (1911).CrossRefPubMedGoogle Scholar
  6. 6.
    P. Goldhaber, I. Cornman, and RA. Omsbee, Experimental alteration of ability of tumor cells to lyse plasma clots in vitro, Proc. Soc. Exp. BioL Med. 66: 590–595 (1947).PubMedGoogle Scholar
  7. 7.
    D.E. Mulling, and S.T. Rohrlich, The role of proteinases in cellular invasiveness. Biochem. Biophys. Acta 695: 177–214 (1983).Google Scholar
  8. 8.
    T. Kalebic, S. Garbisa, B. Glaser, and LA. Liotta, Basement membrane collagen: degradation by migrating endothelial cells. Science 221: 281–283 (1983).CrossRefPubMedGoogle Scholar
  9. 9.
    K. Dan¢, PA. Andreasen,.1. GrOndahl-Hansen, J.P. Kristensen, L.S. Nielsen, and L. Skriver, Plasminogen activators, tissue degradation and cancer, Adv. Cancer Res. 44: 139–266 (1985).Google Scholar
  10. 10.
    R.W. Carrel, a1-antitrypsin molecular pathology, leukocytes and tissue damage, J. Clin. Invest. 78: 1427–1431 (1986).CrossRefGoogle Scholar
  11. 11.
    J.B. Baker, DA. Low, R.L. Simmer, and D.D. Cunningham, Protease nexin: A cellular component that links thrombin and plasminogen activator and mediates their binding to cells, Cell 21: 3747 (1980).CrossRefGoogle Scholar
  12. 12.
    R.W. Scott, and J.B. Baker, Purification of human protease nexin. J. Biol. Chem. 258: 10439–10444 (1983).PubMedGoogle Scholar
  13. 13.
    D.J. Loskutoff, and T.S. Edgington, Synthesis of a fibrinolytic activator and inhibitor by endothelial cells. J. Biol. Chem. 256: 4142–4145 (1982).Google Scholar
  14. 14.
    L. Holmberg, I. LeCander, B. Persson, and B. Astedt, An inhibitor from placenta specifically binds urokinase and inhibitor plasminogen activator released from ovarian carcinoma in tissue culture, Biochem Biophys. Acta 544: 128–137 (1978).CrossRefPubMedGoogle Scholar
  15. 15.
    D.C. Stump, M. Thienpont, and D. Collen, Purification and characterization of a novel inhibitor of urokinase from human urine. Quantitation and preliminary characterization. J. Biol. Chem. 261: 12759–12766 (1986).PubMedGoogle Scholar
  16. 16.
    A. A. Brecher, and N.M. Quinn, The distribution of a particulate trypsin inhibitor in brain. J. Neurochem. 14: 203–206 (1967).CrossRefPubMedGoogle Scholar
  17. 17.
    B.B. Oliphant, J.B. Suszkiw, and A.S. Brecher, The presence of distinct soluble and particulate trypsin inhibitors in human astrocytoma tissue. Proc. Soc. Exp. Biol. Med. 135: 754–756 (1970).PubMedGoogle Scholar
  18. 18.
    R. Sawaya, M. Zuccarello, and R. Highsmith, at-antitrypsin in human brain tumors. J. Neurosurg. 67: 258–262 (1987).CrossRefPubMedGoogle Scholar
  19. 19.
    B.W. Festoff, Neuromuscular junction macromolecules in the pathogenesis of Amyotrophic Lateral Sclerosis, Med. Hypothesis 6: 121–132 (1980).CrossRefGoogle Scholar
  20. 20.
    R.W. Carrell, Alzheimer’ disease: Enter a protease inhibitor. Nature 331: 478–479 (1988).CrossRefPubMedGoogle Scholar
  21. 21.
    N. Kitaguchi, Y. Takahaski, Y. Tokushima, S. Shiotiri, and H. Ito, Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitory activity, Nature 331: 530–532 (1988).CrossRefPubMedGoogle Scholar
  22. 22.
    P. Ponte, D.P. Gonzales, J. Schilling, T. Miller, D. Hsu, B. Greenberg, K. Davis, G.W. Wallace, T. Lieberburg, F. Fuller, and Crodell, A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors, Nature 331: 525–527 (1988).Google Scholar
  23. 23.
    R.E. Tani, A.I. McClatchey, E.D. Lamperti, L. Villa-Komaroff, J.F. Gusella, and R.L. Neve, Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease, Nature 33: 528–530 (1988).CrossRefGoogle Scholar
  24. 24.
    C.R. Abraham, D.J. Selkoe, and H. Potter, Immunochemical identification of the serine protease inhibitor al-antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease, Cell 52: 487501 (1988).Google Scholar
  25. 25.
    S. Gloor, K. Odink, J. Guenther, H. Nick, and D. Monard, A glia derived neurite promoting factor with protease inhibitory activity belongs to the protease nexins, Cell 47: 687–693 (1986).CrossRefPubMedGoogle Scholar
  26. 26.
    M. McGrogan, J. Kennedy, M.P. Li, C. Hsu, R.W. Scott, C. Simonsen, and J.B. Baker, Molecular cloning and expression of two forms of human protease nexin I, Biotechnology 6: 172–177 (1988).CrossRefGoogle Scholar
  27. 27.
    D. Gurwitz, and D D Cunningham, Thrombin modulates and reverses neuroblastoma neurite outgrowth, Proc. Natl. Acad. Sci. 85: 3440–3444 (1988).CrossRefPubMedGoogle Scholar
  28. 28.
    M.L. Rosenblum, K.D. Knebel, K.T. Wheeler, and C.B. Wilson, Development of an in vitro colony formation assay for the evaluation of in vivo chemotherapy of a rat brain tumor. In Vitro 11: 264273 (1975).Google Scholar
  29. 29.
    D.G. Deutsch, and E.T. Mertz, Plasminogen: purification from human plasma by affinity chromatography, Science 170: 1095–1096 (1970).CrossRefPubMedGoogle Scholar
  30. 30.
    R.L. Beach, W.V. Burton, W.J. Hendricks, and B.W. Festoff, Production of extracellular matrix by cultured muscle cells: Basal lamina proteins, J. Biol. Chem. 257: 11437–11442 (1982).PubMedGoogle Scholar
  31. 31.
    J.S. Rao, C.B. Kahler, J.B. Baker, and B.W. Festoff, Protease nexin I, a serpin, inhibits plasminogen-dependent degradation of muscle extracellular matrix, Muscle and Nerve 12: 640–646 (1989).CrossRefPubMedGoogle Scholar
  32. 32.
    L. Werb, M.J. Banda, and PA. Jones, Degradation of connective tissue matrices by macrophages. III. Morphological and biochemical studies on extracellular, pericellular, and intracellular events in matrix proteolysis by macrophages in culture, J. Exp. Med. 152: 1537–1553 (1980).CrossRefPubMedGoogle Scholar
  33. 33.
    B.L. Bergman, R.W. Scott, A. Bajpai, S. Watts, and J.B. Baker, Inhibition of tumor-cell mediated extracellular matrix destruction by a fibroblast proteinase inhibitor protease nexin I, Proc. Natl. Acad. Sci. USA 83: 996–1000 (1986).CrossRefPubMedGoogle Scholar
  34. 34.
    U.K. Laemmli, Cleavage of structural proteins during the assembly of the bed of bacteriophage T4, Nature (London) 227: 680–685 (1970).CrossRefGoogle Scholar
  35. 35.
    A. Granelli-Piperno, and E. Reich, A study of proteases and protease-inhibitor complexes in biological fluids, J. Exp. Med. 148: 223–224 (1978).CrossRefPubMedGoogle Scholar
  36. 36.
    D. Hantaï, J.S. Rao, C.B. Kahler, and B.W. Festoff, Developmental regulation of plasminogen activators in post-natal skeletal muscle, Proc. Natl. Acad. USA 86: 362–366 (1989).CrossRefGoogle Scholar
  37. 37.
    B.W. Festoff, M.R. Patterson, and K. Romstedt, Plasminogen activator: the major secreted neutral protease of cultured skeletal muscle cells, J. Cell Physiol. 110: 190–195 (1982).CrossRefPubMedGoogle Scholar
  38. 38.
    D.W. Rowe, R.C. Moen, J.M. Davidson, P.H. Byers, and P.D. Palmiter, Correlation of procollagen mRNA levels in normal and transformed chick embryo fibroblasts with different rates of procollagen synthesis, Biochemistry 17: 1581–1589 (1978).CrossRefPubMedGoogle Scholar
  39. 39.
    J.H. Han, C. Stratowa, and W.J. Rutter, Isolation of full-length putative rat lysophospholipase cDNA using improved methods for mRNA isolation and cDNA cloning, Biochem. 26: 1617–1625 (1987).CrossRefGoogle Scholar
  40. 40.
    H. Aviv, and P. Leder, Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose, Proc. Natl. Acad. Sci. USA 69: 1408–1413 (1972).CrossRefPubMedGoogle Scholar
  41. 41.
    P.S. Thomas, Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose, Proc. Natl. Acad. Sci. USA 77: 5201–5205 (1980).CrossRefPubMedGoogle Scholar
  42. 42.
    B.W. Festoff, D. Hantaï, J. Soria, A. Thomaidis, and C. Soria, Plasminogen activator in mammalian skeletal muscle: Characterization of effects of denervation on urokinase-like and tissue activators. J. Cell Biol. 103: 1415–1421 (1986).CrossRefPubMedGoogle Scholar
  43. 43.
    TA. Hince, and J.P. Roscoe, Differences in pattern and level of plasminogen activator production between a cloned cell line from an ethylnitrosourea-induced glioma and one from normal adult rat brain. J. Cell Physiol. 106: 199–207 (1980).CrossRefGoogle Scholar
  44. 44.
    H. Kraus, Fibrinolytic activity of cerebral tumors and the treatment of a tendency to hemorrhage. Arch. Neurol. Neurochir. Psychiatr. 108: 27–31 (1971).Google Scholar
  45. 45.
    R. Sawaya, and R. Highsmith, Plasminogen activator activity and molecular weight patterns in human brain tumors. J. Neurosurg. 68: 73–79 (1988).CrossRefPubMedGoogle Scholar
  46. 46.
    S.L. Wagner, J.W. Geddes, C.W. Cotman, A.L. Lau, D. Gurwitz, P.J. Isackson, and D.D. Cunningham, Protease nexin I, an antithrombin with neurite outgrowth activity, is reduced in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 86: 8284–8288 (1989).CrossRefPubMedGoogle Scholar
  47. 47.
    T. Oltersdorf, L.C. Fritz, D.B. Sehenk, I. Lieberburg, K.L. Johnson-Wood, E.C. Beattie, P.J. Ward, R.W. Blacher, H.F. Dovey, and S. Sinha, The secreted form of Alzheimer’s amyloid precursor protein with the Kunitz domain is protease nexin-II. Nature 341: 144–147 (1989).CrossRefPubMedGoogle Scholar
  48. 48.
    W.E. Van Nostrand, S.L. Wagner, M. Suzuki, B.H. Choi, J.S. Farrow, J.W. Geddes, C.W. Cotman, and D.D. Cunningham, Protease nexin-II, a potent antichymotrypsin, shows identity to !1-amyloid precursor protein. Nature 341: 546–549 (1989).CrossRefPubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Jasti S. Rao
    • 1
  • Riichiro Suzuki
    • 1
  • Barry W. Festoff
    • 1
  1. 1.University of Kansas and Department of Veterans Affairs Medical CenterNeurobiology Research Laboratory (151)Kansas CityUSA

Personalised recommendations