Presence and Significance of α1-Antitrypsin in Human Brain Tumors

  • Raymond Sawaya
Part of the NATO ASI Series book series (NSSA, volume 191)


It is increasingly recognized that proteinases are involved in the basic biological events associated with the neoplastic growth. Tumor invasiveness and the ability of tumor cells in culture to degrade extracellular proteins are indirect evidence of the involvement of the proteolytic enzymes. More direct evidence has been provided by the detection of increased levels of proteinases capable of digesting connective tissue matrix component within the tumor environment1–7. Studies involving brain tumor tissues have demonstrated the production of plasminogen activators (PA) in high concentrations by cultured brain tumor cells8 and by a variety of fresh surgical specimen of human brain tumors.9


Brain Tumor Acoustic Neuroma Human Brain Tumor Plasminogen Activator Activity Endodermal Sinus Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.E. Laug, YA. DeClerck, and PA. Jones: Degradation of the subendothelial matrix by tumor cells. Cancer Res. 43: 1827–1834, (1983).PubMedGoogle Scholar
  2. 2.
    LA. Liotta, S. Abe, P.G. Robey, et al.: Preferential digestion of basement membrane collagen by an enzyme derived from a metastatic murine tumor. Proc. Natl Acad. Sci. USA 76: 2268–2271, (1979).CrossRefPubMedGoogle Scholar
  3. 3.
    L. Ossowski, J.C. Unkeless, A. Tobia, et al.: An enzymatic function associated with transformation of fibroblasts by oncogenic viruses. II. Mammalian fibroblast cultures transformed by DNA and RNA tumor viruses. J. Exp. Med. 137: 112–126, (1973).CrossRefPubMedGoogle Scholar
  4. 4.
    A.R. Poole, K.J. Tiltman, A.D. Recklies, et al.: Differences in secretion of the proteinase cathepsin B at the edges of human breast carcinomas and fibroadenomas. Nature 273: 544–547, (1978).CrossRefGoogle Scholar
  5. 5.
    B.F. Sloane, J.R. Dunn, and K.V.Honn: Lysosomal cathepsin B: correlation with metastatic potential. Science 212: 1151–1153, (1981).Google Scholar
  6. 6.
    J. Unkeless, K. Dano, G.M. Kellerman, et al.: Fibrinolysis associated with oncogenic transformation. Partial purification and characterization of the cell factor, a plasminogen activator. J. BioL Chem. 249: 4295–4305, (1974).PubMedGoogle Scholar
  7. 7.
    J. Unkeless, A. Tobia, L. Ossowski, et al.: An enzymatic function associated with transformation of fibroblasts by oncogenic viruses. I. Chick embryo fibroblast cultures transformed by avian RNA tumor viruses. J. Exp. Med. 137: 85–112, (1973).CrossRefPubMedGoogle Scholar
  8. 8.
    W.S. Tucker, W.M. Kirsch, A. Martinez-Herandez, et al.: In vitro plasminogen activator activity in human brain tumors. Cancer Res. 38: 297–302, (1978).PubMedGoogle Scholar
  9. 9.
    R. Sawaya, and R. Highsmith: Plasminogen activator activity and molecular weight patterns in human brain tumors. J. Neurosurg. 68: 73–79, (1988).CrossRefPubMedGoogle Scholar
  10. 10.
    R. Sawaya, C.J. Cummins, and P.L. Kornblith: Brain tumors and plasmin inhibitors. Neurosurgery 15: 795–800, (1984).CrossRefPubMedGoogle Scholar
  11. 11.
    K. Geboes, M.B. Ray, P. Rutgeerts, et al.: Morphological identification of at-antitrypsin in the human small intestine. Histopathology 6: 55–60, (1982).CrossRefPubMedGoogle Scholar
  12. 12.
    M.B. Ray, and V.J. Desmet: Immunohistochemical demonstration of al-antitrypsin in the islet cells of human pancreas. Cell Tissue Res. 187: 69–77, (1978).CrossRefPubMedGoogle Scholar
  13. 13.
    W.C. Tuttle, and R.K. Jones: Fluorescent antibody studies of afantitrypsin in adult human lung. Am J. Clin. Pathol. 64: 477–482, (1975).PubMedGoogle Scholar
  14. 14.
    P.J. Klemi, L. Meurman, M. Gronroos, et al.: Clear cell (mesonephroid) tumors of the ovary with characteristics resembling endodermal sinus tumor. Int. J. GynecoL PathoL 1: 95–100, (1982).CrossRefPubMedGoogle Scholar
  15. 15.
    B.S. Mann, and J.F. Geddes: The nature of cytoplasmic inclusions in cerebellar haemangioblastomas. Acta NeuropathoL (Berl) 67: 174–176, (1985).Google Scholar
  16. 16.
    M.B. Ray, K. Geboes, F. Callea, et al.: arantitrypsin immunoreactivity in gastric carcinoid. Histopathology 6: 289–297, (1982).CrossRefPubMedGoogle Scholar
  17. 17.
    M. Zuccarello, R. Sawaya, M. Ray: Immunohistochemical demonstration of al-proteinase inhibitor in brain tumors. Cancer 60: 804–809, (1987).CrossRefPubMedGoogle Scholar
  18. 18.
    R. Sawaya, M. Zuccarello, and R. Hi. hsmith: al-antitrypsin in human brain tumors. J. Neuro Surg. 67: 258–262, (1987).Google Scholar
  19. 19.
    R. Sawaya, T. Mandybur, I. Ormsby, et al.: Antifibrinolytic therapy of experimentally grown malignant brain tumors. J. Neurosurg. 64: 263–268, (1986).CrossRefPubMedGoogle Scholar
  20. 20.
    J.J. Gilbert, J.E. Paulseth, R.K Coates, et al.: Cerebral edema associated with meningiomas. Neurosurgery 12: 599–605, (1983).CrossRefPubMedGoogle Scholar
  21. 21.
    Ouchterlony: Diffusion-in-gel methods for immunological analysis. Prag. Alleregy 5: 1–78, (1959).Google Scholar
  22. 22.
    LA. Sternberger, P.H. Hardy, and J.J Culis: The unlabeled antibody enzyme method of immunohistochemistry. J. Histochem. Cytochem. 18: 315–333, (1970).CrossRefPubMedGoogle Scholar
  23. 23.
    E.H. Cooper, R. Turner, A. Geekie, et al: a-globulins in the surveillance of colorectal carcinoma. Biomedicine 24: 171–178, (1976).PubMedGoogle Scholar
  24. 24.
    C.C. Harris, A. Primack, and M.H. Cohen: Elevated al-antitrypsin levels in lung cancer patients. Cancer 34: 280–281, (1974).CrossRefPubMedGoogle Scholar
  25. 25.
    W.K. Mueller, R. Handschumacher, and M.E. Wade: Serum haptoglobin in patients with ovarian malignancies. J. Obstet. GynecoL 38: 427–435, (1971).Google Scholar
  26. 26.
    H. Matsuura, and S. Nakazawa: Prognostic significance of serum al-acid glycoprotein in patients with glioblastoma multiforme: A preliminary communication. J. NeuroL Neurosurg. Psychiat. 48: 835–837, (1985).CrossRefPubMedGoogle Scholar
  27. 27.
    J.F. Weiss, RA. Morantz, and W.P. Bradley: Serum acute-phase proteins and immunoglobulins in patients with gliomas. Cancer Res. 39: 542–544, (1979).PubMedGoogle Scholar
  28. 28.
    S. Galvez, A. Farcas, and M. Monari: The concentration of arantitrypsin in cerebospinal fluid and serum in a series of 40 intracranial tumors. Clin. Chim. Acta 91: 191–196, (1979).CrossRefPubMedGoogle Scholar
  29. 29.
    M.N. Hart: Hyaline globules (Letter). Arch PathoL 96: 144, (1973).PubMedGoogle Scholar
  30. 30.
    T. Kubota, A. Hirano, and S. Yamamoto: Electron microscopic study of hyaline inclusions in meningioma. No. Shinkei. Geka. 10: 521–528, (1982).PubMedGoogle Scholar
  31. 31.
    D.E. Mullins, and S.T. Rohrlich: Role of proteinases in cellular invasiveness. Biochim. Biophys. Acta 695: 177–214, (1983).PubMedGoogle Scholar
  32. 32.
    D.B. Rifkin, and R.M. Crowe: Isolation of a protease inhibitor from tissues resistant to tumor invasion. Hoppe Seylers Z. PhysioL Chem. 358: 1525–1531, (1977).CrossRefPubMedGoogle Scholar
  33. 33.
    E.W. Ades, A. Hinson, C. Chapuis-Cellier, et al: Modulation of the immune response by plasma protease inhibitors. I. aZ macroglobulin and at-antitrypsin inhibit natural killing and an- tibody-dependent cell-mediated cytotoxicity. Scand. J. ImmunoL 15: 109–113, (1982).CrossRefPubMedGoogle Scholar
  34. 34.
    D. Redelman, and D. Hudig: The mechanism of cell-mediated cytotoxicity. I. Killing by murine cytotoxic T lymphocytes requires cell surface thiols and activated proteases. J. Immunol. 124: 870–878, (1980).PubMedGoogle Scholar
  35. 35.
    A. Akatsuka, S. Yoshimura, J. Hatu, et al: Intracellular localization of human plasma proteins revealed by peroxidase-antibody method in human tumors transplanted in nude mice. J. Electron Microsc. 28: 93–99, (1979).Google Scholar
  36. 36.
    D. Hudig, T. Haverty, C. Fulcher, et al.: Inhibition of human natural cytotoxicity by macromolecular antiproteases. J. ImmunoL 126: 1569–1574, (1981).PubMedGoogle Scholar
  37. 37.
    S.N. Breit, D. Wakefield, J.P. Robinson, et al: The role of al-antitrypsin deficiency in the pathogenesis of immune disorders. Clin. ImmunoL ImmunopathoL 35: 363–380, (1985).CrossRefPubMedGoogle Scholar
  38. 38.
    S. Yoshimura, N. Tamaoki, Y. Ueyama, et al.: Plasma protein production by human tumor xenotransplanted in nude mice. Cancer Res. 38: 3474–3478, (1978).PubMedGoogle Scholar
  39. 39.
    I. Reintoft, and I. Hagerstrand: Demonstration of at-antitrypsin in hepatomas. Arch. Pathol. Lab Med. 103: 495–498, (1979).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Raymond Sawaya
    • 1
  1. 1.Department of NeurosurgeryUniversity of Cincinnati College of Medicine and Veterans AdministrationCincinnatiUSA

Personalised recommendations