Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 191))

  • 48 Accesses

Abstract

Proteases and their inhibitors are known or suspected to be implicated in many aspects of normal physiology and disease processes. Although the etiologies of all neurological diseases are not yet known, many are fatal and can be classified as hereditary. Among them are amyotrophic lateral scleroses (ALS) and familial amyloidotic polyneuropathy (FAP). FAP is encountered often in our clinical work at Shinshu University School of Medicine because our hospital is located in one of the areas reporting the highest incidence of FAP in the world, second only to Portugal. Therefore, myself and my colleagues have taken a special interest in investigating the states of proteases and their inhibitors in neurologic diseases. This chapter briefly summarizes our current state of knowledge concerning the implications of protease and protease inhibitors in ALS and FAP. These developments should provide insights for subsequent steps toward clarifying the etiologies of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.P. Antel, E. Chelmicka Schorr, M. Sportiello, K. Stefansson, R.L. Wollman, and B. G. W. Arnason, Muscle acid protease activity in amyotrophic lateral sclerosis: correlation with clinical and pathologic features. Neurology, 32: 901–903 (1982).

    Article  CAS  PubMed  Google Scholar 

  2. R.L. Beach, L.S.Rao, B.W.Festoff, E.T. Reyes, R.Yanagihara, and D. C.Gajdusek, Collagenase activity in skin fibroblasts of patients with amyotrophic lateral sclerosis. J. NeuroL Sci, 72: 49–60 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. B.W. Festoff, Circulating protease inhibitors in amyotrophic lateral sclerosis: reduced a2 macroglobulin. Ann. NeuroL, 8: 121 (1980).

    Google Scholar 

  4. B.W. Festoff, Occurrence of reduced aZ macroglobulin and lowered protease inhibiting capacity in plasma of amyotrophic lateral sclerosis patients. Ann. N.Y. Acad Sci., 421: 369–376 (1983).

    Article  CAS  PubMed  Google Scholar 

  5. N. Adachi, and S. Shoji, Studies of protease inhibitors in the sera of patients with amyotrophic lateral sclerosis. J. NeuroL Sci., 89: 165–168 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. C. Andrade, A peculiar form of peripheral neuropathy:familial atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain, 75: 408–427 (1952).

    Article  CAS  PubMed  Google Scholar 

  7. S. Araki, S. Mawatari, M. Ohta, A. Nakajima, and Y. Kuroiwa, Polyneuritic amyloidosis in a Japanese family. Arch. NeuroL, 18: 593–602 (1968).

    Article  CAS  PubMed  Google Scholar 

  8. M.D. Benson, and A.S. Cohen, Generalized amyloid in a family of Swedish origin. Ann. Intern. Med., 86: 419–424 (1977).

    CAS  PubMed  Google Scholar 

  9. P.P. Costa, A.S. Figueira, and F. R. Bravo, Amyloid fibril protein related to prealbumin in familial amyloid polyneuropathy. Proc. Natl. Acad. Sci. USA, 75: 4499–4503 (1978).

    Article  CAS  PubMed  Google Scholar 

  10. M. Pras, F. Prelli, E.C. Franklin, and B. Fragione, Primary structure of an amyloid prealbumin variant in familial polyneuropathy of Jewish origin. Proc. NatL Acad. Sci. USA, 80: 539–542 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. S. Tawara, M. Nakazato, K. Kangawa, H. Matsuo, and S. Araki, Identification of amyloid prealbumin variant in familial amyloidotic polyneuropathy (Japanese type). Biochem. Biophys. Res. Commun., 116: 880–888 (1983).

    Article  CAS  PubMed  Google Scholar 

  12. M.J.M. Saraiva, S. Birken, P.P. Costa, and D.S. Goodman, Amyloid fibril protein in familial amyloidotic polyneuropathy, Portuguese type. J Clin Invest 74: 104–19 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. F.E. Dwulet, and M.D. Benson, Primary structure of an amyloid prealbumin and its plasma precursor in a heredo-familial polyneuropathy of Swedish origin. Proc Nat Acad Sci USA 81: 694–98 (1984).

    Article  CAS  PubMed  Google Scholar 

  14. S. Mita, S. Maeda, K. Shimada, and S. Araki, Cloning and sequence analysis of cDNA for human prealbumin. Biochem Biophys Res Commun 124: 558–64 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. M.J.M. Saraiva, P.P. Costa and D.S. Goodman, Genetic expression of a transthyretin mutation in typical and late-onset Portuguese families with familial amyloidotic polyneuropathy. Neurology, 36: 1413–1417 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. G. Holmgren, E. Haettner, I. Nordenso, O.L. Sandgren, L. Steen, and E. Lundgren, (1988) Homozygosity for the transthyretin-met30-gene in two Swedish sibs with familial amyloidotic polyneuropathy. Clin Genet (Denmark) 34 (5) p333–8.

    Google Scholar 

  17. I. Kedar, M. Ravid, and E. Sohar, Demonstration of amyloid degrading activity in normal human serum. Proc. Soc. Exp. BioL Med., 145: 343–345 (1974).

    CAS  PubMed  Google Scholar 

  18. O. Wegelius, A.M. Teppo, and C.P.J. Maury, Reduced amyloid A-degrading activity in serum in amyloidosis associated with rheumatoid arthritis. Br. Med. J., 284: 617–619 (1982).

    Article  CAS  Google Scholar 

  19. B. Skogen, and L. Natvig, Degradation of amyloid proteins by different serine proteases. Scand. J. ImmunoL, 14: 389–396 (1981).

    Article  CAS  PubMed  Google Scholar 

  20. N. Adachi, S.Shoji, S.Nakagawa, C-S.Koh, N.Tsukada and N.Yanagisawa, Studies of protease and protease inhibitors in familial amyloidotic polyneuropathy. J. NeuroL Sci., 81: 79–84 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. M. Howell, Acquired factor X deficiency associated with systemic amyloidosis: report of a case. Blood 21: 739–744 (1963).

    CAS  PubMed  Google Scholar 

  22. J.R. Krause, Acquired factor X deficiency and amyloidosis. Am. J. Clin. Path. 67: 170–173 (1977).

    CAS  PubMed  Google Scholar 

  23. M. Quitt, E. Aghai, D. Miriam, R. Kohan, Y.B. Ari, and P. Froom, Acquired factor X and antithrombin III deficiency in a patient with primary amyloidosis and nephrotic syndrome. Scand. J. HaematoL 35: 155–157 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. B. Furie, E. Greene, and B.C. Furie, Syndrome of acquired factor X deficiency and systemic amyloidosis: in vivo studies of the metabolic fate of factor X. New Engl. J. Med. 297: 81–85 (1977).

    Article  CAS  PubMed  Google Scholar 

  25. RA. McPherson, J.W. Onstad, R.J. Ugoretz, and P.L. Wolf, Coa-gulopathy in amyloidosis: combined deficiency of factors IX and X. Am. J. HematoL 3: 225–235 (1977).

    CAS  PubMed  Google Scholar 

  26. N. Adachi, C.S. Koh, N. Tsukada, S. Shoji, and N. Yanagisawa, In vitro degradation of amyloid material by four proteases in tissue of a patient with familial amyloidotic polyneuropathy. J.NeuroL Sci, 84:295–299 (1988).

    Google Scholar 

  27. T. Isobe, and E.F. Osserman, Effects of dimethyl sulphoxide (DMSO) on Bence-Jones proteins, amyloid fibrils and casein-induced amyloidosis. In: Wegelius O, Pastemack A, eds. Amyloidosis. London, New York and San Francisco: Academic Press, 1976:247–57 (1976).

    Google Scholar 

  28. H. Falck, and O. Wegelius, Treatment of secondary renal amyloidosis with dimethyl sulphoxide. In: Proceedings of European Amyooidosis Research Symposium. Bristol, Sept 10–12, 1981.

    Google Scholar 

  29. I. Kedar, E. Sohar, and M. Ravid, Degradation of amyloid by a serum component and inhibition of degradation. J. Lab. Clin. Med., 99: 693–700 (1982).

    CAS  PubMed  Google Scholar 

  30. B. Skogen,and E. Amundsen, Degradation of amyloid proteins with protease I from Aspergillus oryzae. In vivo increase in SAA clearance rate after enzyme infusion. Scand. J. ImmunoL 16, 509–514 (1982).

    Google Scholar 

  31. N. Adachi, S. Shoji, and N. Yanagisawa, Bleeding Manifestations in 24 Patients with Familial Amyloidotic Polyneuropathy. Europ. NeuroL 28: 115–116 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. T. Kobayashi, H. Ozone, H. Kamei, and K. Ishimaru, Chymoral for inflammatory diseases in the orodental area. Shikai Tenbo. 64 (4): 813–8 (1984).

    CAS  PubMed  Google Scholar 

  33. P.H. Brakenbury, and J. Kotowski, A comparative study of the management of anlde sprains. Br J Clin Pract. 37 (5); 181–5 (1983).

    CAS  PubMed  Google Scholar 

  34. A.D. Roberts, and D.M. Hart, Polyglycolic acid and catgut sutures, with and without oral proteolytic enzymes, in the healing of episiotomies. Br J Obstet Gynaecol. 90 (7); 650–3 (1983).

    Article  CAS  PubMed  Google Scholar 

  35. V.G. Glozman, and I.S.Anchupane, Use of chymotrypsin in inflammatory diseases of the scrotal organs. Urol Nefrol (Musk). (5): 44–6 (1982).

    Google Scholar 

  36. S. Avakian, Current concepts in therapy. Chymotrypsin and trypsin. N F.ngl J Med. (1961).

    Google Scholar 

  37. R.D. Rodewald, Selective antibody transport in the proximal small intestine of the neonatal rat. J Cell Biol 45: 635–40 (1970).

    Article  CAS  PubMed  Google Scholar 

  38. A. Stochino, G. Tecce, and G.G. Tedeschi, Sull’assorbimento intestinal delle proteine omologhe ed eterologhe. Boll Soc ltal Biol Sper 27: 1672–4 (1951).

    CAS  Google Scholar 

  39. J.M. Payne, B.F. Sansom, R.J. Garner, A.R. Thomson, and B.J. Miles, Uptake of small resin particles (1–5 microns diameter) by alimentary canal of calf. Nature (London) 188: 586 (1960).

    Article  CAS  Google Scholar 

  40. RA. Bruce, and K.C. Quinton, Effect of oral a-chymotrypsin on sputum viscosity. Br Med J, 1: 282284 (1962).

    Google Scholar 

  41. B.L. Kabacoff, A. Wohhnan, M. Umkey, and S. Avakian, Absorption of chymotrypsin from the intestinal tract. Nature, 199: 815 (1963).

    Article  CAS  PubMed  Google Scholar 

  42. S. Avakian, Further studies on the absorption of chymotrypsin. Clin Pharmacol Ther, 5: 712–5 (1964).

    CAS  PubMed  Google Scholar 

  43. C.R. Abraham, D. J. Selkoe and H. Potter, Immunochemical identification of the serine protease inhibitor, at-antichymotrypsin, in the brain amyloid deposits of Alzheimer’s disease. Cell, 52: 487501 (1988).

    Google Scholar 

  44. C.S. Koh, and P.Y. Paterson, Suppression of Clinical Signs of Cell Transferred Experimental Allergic Encephalomyelitis and Altered Cerebrovascular Permeability in Lewis Rats Treated with a Plasminogen Activator Inhibitor. Cellular Immunology 107, 52–63 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. L.G. Millard, and N.R. Rowell, Primary amyloidosis and myelomatosis associated with excessive fibrinolytic activity. Br. J. Derm. 94: 569–571 (1976).

    Article  CAS  Google Scholar 

  46. L.S. Perlin, P. Brakman, H.S. Berg, P.I. Kirchner, R.B. Moguin, T. Astrup, Enhanced blood coagulation and fibrinolysis in a patient with primary fibrinolysis. Thromb Haemostasis 26: 9–14 (1971).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Adachi, N. (1990). Protease Inhibitors in Neurologic Diseases. In: Festoff, B.W., Hantaï, D. (eds) Serine Proteases and Their Serpin Inhibitors in the Nervous System. NATO ASI Series, vol 191. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8357-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8357-4_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8359-8

  • Online ISBN: 978-1-4684-8357-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics