Skip to main content

Localized Extracellular Proteolysis May Convey Inductive Signals Between Nerve and Muscle Cells During Synaptogenesis

  • Chapter
Serine Proteases and Their Serpin Inhibitors in the Nervous System

Part of the book series: NATO ASI Series ((NSSA,volume 191))

Abstract

A variety of fundamental regulatory processes seems to be dependent upon short-range cellular interactions with immediate neighbors, and with the organized structural scaffolding of the extracellular matrix (ECM). These interactions contribute to the maintenance and repair of tissue organization in adult animals, and appear to be particularly important for conveying the positional information that is essential for the control of cellular migration, proliferation and differentiation during embryo-genesis. While all of these processes can be inhuenced by exogenous humoral factors, and by the adhesive substances of the ECM, it is not yet clear how the relevant regulatory signals are generated and distinguished at appropriate sites of close cell contact in vivo (for reviews, see references 1–3). Our ignorance stems primarily from the fact that the most striking ‘inductive’ cellular interactions occur only transiently, at discrete sites within intact living organisms, a situation which restricts the use of conventional biochemical methods. If these limitations could be overcome by cytochemical techniques, therefore, it should become possible to determine the sequence of biochemical events that are initiated during inductive interactions between individual cell-pairs, and perhaps to identify the key molecular events that are most directly affected by close cell contact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Ekblom, D. Vestweber, and R. Kemler, Cell-matrix interactions and cell adhesion during development. Ann. Rev. Cell BioL 2: 27–47 (1986).

    Google Scholar 

  2. J. Gurdon, Embryonic induction–molecular prospects. Development 99: 285–306 (1987).

    CAS  PubMed  Google Scholar 

  3. A.G. Jacobson, and A.K. Slater, Features of embryonic induction. Development 104: 341–359 (1988).

    CAS  PubMed  Google Scholar 

  4. M.J. Anderson, M.W. Cohen, and E. Zorychta, Effects of innervation on the distribution of acetycholine receptors on cultured amphibian muscle cells. J. PhysioL (Loud.) 268: 731–756 (1977).

    CAS  Google Scholar 

  5. M.W. Cohen, and P.R. Weldon, Localization of acetylcholine receptors and synaptic ultrasstructure at nerve-muscle contacts in culture: dependence on nerve type. J. CelL BioL 86: 388401 (1980).

    Google Scholar 

  6. E.L. Frank, and G.D. Fischbach, Early events in neuromuscular junction formation in vitro. Induction of acetylcholine receptor clusters in the postsynaptic membrane and morphology of newly formed synapses. J. Cell BioL 83: 143–158 (1979).

    Article  CAS  PubMed  Google Scholar 

  7. Y. Kidokoro, M.J. Anderson, and R. Gruener, Changes in synaptic potential properties during acetylcholine receptor accumulation and neurospecific interactions in Xenopus nerve-muscle cell culture. DeveL BioL 78: 464–483 (1980).

    Google Scholar 

  8. M.J. Anderson, and M.W. Cohen, Nerve-induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. J. PhysioL (Load.) 268: 757–773 (1977).

    CAS  Google Scholar 

  9. L. Ziskind-Conhaim, I. Geffen, and Z.W. Hall, Redistribution of acetylcholine receptors on developing rat myotubes. J. Neurosci. 4: 2346–2349 (1984).

    CAS  PubMed  Google Scholar 

  10. D.F. Davey, and M.W. Cohen, Localization of acetylcholine receptors and cholinesterase on nerve-contacted and non-contacted muscle cells grown in the presence of agents that block action potentials. J. Neurosci. 6: 673–680 (1986).

    CAS  PubMed  Google Scholar 

  11. S.J. Burden, The extracellular matrix and subsynaptic sarcoplasm at nerve-muscle synapses. In: The Vertebrate Neuromuscular Junction, ed. M. M. Salpeter, pp 163–186, A.R. Liss, Inc., New York (1987).

    Google Scholar 

  12. M.M. Salpeter, Developmental and neural control of the neuromuscular junction and of the junctional acetylcholine receptor. In:The Vertebrate Neuromuscular Junction, ed M.M. Salpeter, pp. 55–115. A.R. Liss, New York (1987).

    Google Scholar 

  13. K.F. Barald, G.D. Phillips, J.C. Jay, and I.F. Mizukami, A component in mammalian muscle synaptic basal lamina induces clustering of acetylcholine receptors. Prog. Brain Res. 71: 397–408 (1987).

    Article  Google Scholar 

  14. H.C. Bauer, M.P. Daniels, PA. Pudimat, L. Jacques, H. Sugiyama, and C.N. Christian, Characterization and partial purification of a neuronal factor which increases acetylcholine receptor aggregation on cultured muscle cells. Brain Res. 209: 395–405 (1981).

    Article  CAS  PubMed  Google Scholar 

  15. C.N. Christian, M.P. Daniels, H. Sugiyama, Z. Vogel, L. Jacques, and P.G. Nelson; A factor from neurons increases the number of acetylcholine receptor aggregates on cultured muscle cells. Proc. Natl. Acad. Sci. USA 75: 4011–4015 (1978).

    Article  CAS  PubMed  Google Scholar 

  16. JA. Connolly, PA. St. John, and G.D. Fischbach, Extracts of electric lobe and electric organ from Torpedo californica increase the total number as well as the number of aggregates of chick myotube acetylcholine receptors. J. Neuroscience 2: 1207–1213 (1982).

    CAS  Google Scholar 

  17. B. Fontaine, A. Klarsfeld, T. Hökfelt, and J. P. Changeux, Calcitonin gene-related peptide, a peptide present in spinal cord motoneurons, increases the number of acetylcholine receptors in primary cultures of chick embryo myotubes. Neurosci. Lett 71: 59–65 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. T.M. Jessel, R.E. Siegel, and G.D. Fischbach, Induction of acetylcholine receptors on cultured skeletal muscle by a factor extracted from brain and spinal cord. Proc. NatL Acad. Sci. USA 76: 5397–5401 (1979)

    Article  Google Scholar 

  19. C. Kalcheim, Z. Vogel, and D. Duksin, Embryonic brain extract induces collagen biosynthesis in cultured muscle cells: involvement in acetylcholine receptor aggregation. Proc. NatL Acad. Sci. USA 79: 3077–3081 (1982).

    Article  CAS  PubMed  Google Scholar 

  20. D. Knaack, I. Shen, M.M. Salpeter, and T.R. Podleski, Selective effects of ascorbic acid on acetylcholine receptor number and distribution. J. Cell BioL 102: 795–802 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. G.J. Markelonis, RA. Bradshaw, T.H. Oh, J.L. Johnson, and O.J. Bates, Sciatin is a transferrinlike polypeptide. J. Neurochem. 39: 315–320 (1982).

    Article  CAS  PubMed  Google Scholar 

  22. R.M. Nitkin, MA. Smith, C. Magill, J.R. Fallon, Y.-M. M. Yao, B.G. Wallace, and U.J. McMahan, Identification of Agrin, a synaptic organizing protein from Torpedo electric organ. J. Cell. BioL 105: 2471–2478 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. T.B. Usdin, and G.D. Fischbach, Purification and characterization of a polypeptide from chick brain that promotes the accumulation of acetylcholine receptors in chick myotubes. J. Cell BioL 103: 493–507 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Z. Vogel, C.N. Christian, M. Vigny, H.C. Bauer, P. Sonderegger, and M.P. Daniels, Laminin induces acetylcholine receptor activity of a neuronal factor. J. Neurosci. 3: 1058–1068 (1983).

    CAS  PubMed  Google Scholar 

  25. H.B. Peng, Participation of calcium and camodulin in the formation of acetylcholine receptor clusters. J. Cell BioL 92: 550–557 (1984).

    Article  Google Scholar 

  26. H.B. Peng, Elimination of preexistent acetylcholine receptor clusters induced by the formation of new clusters in the absence of nerve. J. Neurosci. 6: 581–589 (1986).

    CAS  PubMed  Google Scholar 

  27. H.B. Peng, Q. Chen, M.W. Rochlin, D. Zhu, and B. Kay, Mechanisms of neuromuscular junction development studied in tissue culture. In: Developmental Neurobiology of the Frog, ed. E.D. Pollack and H.D. Bibb, pp. 103–119, A.R. Liss, New York (1988).

    Google Scholar 

  28. H.B. Peng, and P. Cheng, Formation of postsynaptic specializations induced by latex beads in cultured muscle cells. J. Neurosci. 2: 1760–1774 (1982).

    CAS  PubMed  Google Scholar 

  29. H.B. Peng, P.C. Cheng, and P.W. Luther, Formation of Ach receptor clusters induced by positively charged beads. Nature (Loud.) 292: 831–834 (1981).

    Article  CAS  Google Scholar 

  30. R.W. Burry, R. Ho, and W.D. Matthew, Presynaptic elements formed on polylysine-coated beads contain synaptic vesicle antigens. J. NeurocytoL 15: 409–419 (1986).

    Article  CAS  PubMed  Google Scholar 

  31. S.J. Burden, P.B. Sargent, and UJ. McMahan, Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of nerve. J. Cell BioL 82: 412–425 (1979).

    Article  CAS  PubMed  Google Scholar 

  32. J.R. Sanes, L.M. Marshall, and UJ. McMahan, Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites. J. Cell BioL 78: 176–198 (1978).

    Article  CAS  PubMed  Google Scholar 

  33. MJ. Anderson, and D.M. Fambrough, Aggregates of acetylcholine receptors are associated with plaques of a basal lamina heparan sulfate proteoglycan on the surface of skeletal muscle fibres. J. Cell BioL 97: 1396–1411 (1983).

    Article  CAS  PubMed  Google Scholar 

  34. M.J. Anderson, F.G. Klier, and K.E. Tanguay, Acetylcholine receptor aggregation parallels the deposition of a basal lamina proteoglycan during development of the neuromuscular junction. J. Cell BioL 99: 1769–1784 (1984).

    Article  CAS  PubMed  Google Scholar 

  35. C.B. Weinberg, and Z.W. Hall, Junctional forms of acetyl-cholinesterase restored at nerve-free endplates. DeveL BioL 68: 631–635 (1979).

    Article  CAS  Google Scholar 

  36. E.K. Bayne, M.J. Anderson, and D.M. Fambrough, Extracellular matrix organization in developing muscle: correlation with acetylcholine receptor aggregates. J. Cell BioL 99: 1486–1501 (1984).

    Article  CAS  PubMed  Google Scholar 

  37. M.P. Daniels, M. Vigny, P. Sonderegger, H.C. Bauer, and Z. Vogel, Association of laminin and other basement membrane components with regions of high acetylcholine receptor density on cultured myotubes. Int. J. Develop. Neurosci. 2: 87–99 (1984).

    Article  CAS  Google Scholar 

  38. J.R. Fallon, and C E Gelfman, Agrin-related molecules are concentrated at acetylcholine receptor clusters in normal and aneural developing muscle. J. Cell BioL 108: 1527–1535 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. F. Moody-Corbett, and M.W. Cohen, Localization of cholinesterase at sites of high acetylcholine receptor density on embryonic amphibian muscle cells cultured without nerve. J. Neurosci. 1: 596–605 (1981).

    CAS  PubMed  Google Scholar 

  40. M.J. Anderson, Nerve-induced remodeling of muscle basal lamina during synaptogenesis. J. Cell BioL 102: 863–877 (1986).

    Article  CAS  PubMed  Google Scholar 

  41. Z. Avnur, and B. Geiger, The removal of extracellular fibronectin from areas of cell-substrate contact. Cell 25: 121–132 (1981).

    Article  CAS  PubMed  Google Scholar 

  42. J.-M. Chen, and W.-T. Chen, Fibronectin-degrading proteases from the membranes of transformed cells. Cell 48: 193–203 (1987).

    Article  CAS  PubMed  Google Scholar 

  43. W.-T. Chen, J.-M.K. Chen, S.J. Parsons, and J.T. Parsons, Local degradation of fibronectin at sites of expression of the transforming gene product pp60src. Nature (Lund.) 316: 156–158 (1985).

    Article  CAS  Google Scholar 

  44. W.-T. Chen, K. Olden, BA. Bernard, and F.-F. Chu, Expression of transformation-associated protease(s) that degrade fibronectin at cell contact sites. J. Cell BioL 98: 1546–1555 (1984).

    Article  CAS  PubMed  Google Scholar 

  45. F. Grinnell, Focal adhesion sites and the removal of substratum-bound fibronectin. J. Cell BioL 103: 2697–2706 (1986).

    Article  CAS  PubMed  Google Scholar 

  46. F. Blasi, J.-D. Vassalli, and K. Dan$, Urokinase-type plasminogen activator: Proenzyme, receptor, and inhibitors. J. Cell BioL 104: 801–804 (1987).

    Article  CAS  PubMed  Google Scholar 

  47. O. Saksela, Plasminogen activation and regulation of pericellular proteolysis. Biochem. Biophys. Acta 823: 35–65 (1985).

    CAS  PubMed  Google Scholar 

  48. O. Saksela, and D.B. Rifkin, Cell-associated plasminogen activation: regulation and physiological functions. Ann. Rev. Cell. BioL 4: 93–126 (1988).

    Article  CAS  PubMed  Google Scholar 

  49. B. Furie, and B.C. Furie, The molecular basis of blood coagulation. Cell 53: 505–518 (1988).

    Article  CAS  PubMed  Google Scholar 

  50. LA. Liotta, C.N. Rao, and U.M. Wewer, Biochemical interactions of tumour cells with the basement membrane. Ann. Rev. Biochem. 55: 1037–1057 (1986).

    Article  CAS  PubMed  Google Scholar 

  51. G.K. Scott, Proteinases and eukaryotic cell growth. Comp. Biochem. PhysioL 87B: 1–10 (1987).

    Article  CAS  Google Scholar 

  52. A. Krystosek, and N.W. Seeds, Peripheral neurons and Schwann cells secrete plasminogen activator. J. Cell. BioL 98: 773–776 (1984).

    Google Scholar 

  53. R.N. Pittman, Release of plasminogen activator and a calcium-dependent metalloprotease from cultured sympathetic and sensory neurons. DeveL BioL 110: 91–101 (1985).

    Article  CAS  Google Scholar 

  54. J. Pöllänen, K Hedman, L.S. Nielsen, K Dan¢, and A. Vaheri, Ultrastructural localization of plasma membrane-associated urokinase-type plasminogen activator at focal contacts. J. Cell BioL 106: 87–95 (1988).

    Article  PubMed  Google Scholar 

  55. J. Pöllänen, O. Saksela, E.M. Salonen, P. Andreasen, L. Nielsen, K DanO, and A. Vaheri, Distinct localization of urokinase-type plasminogen activator and its type 1 inhibitor under cultured human fibroblasts and sarcoma cells. J. Cell BioL 104: 1085–1096 (1987).

    Article  PubMed  Google Scholar 

  56. CA. Buck, and A.F. Horwitz, Cell surface receptors for extracellular matrix molecules. Ann. Rev. Cell BioL 3: 179–205 (1987).

    Article  CAS  PubMed  Google Scholar 

  57. A. Horwitz, K. Duggan, R. Grecos, C. Decker, and C. Buck, The cell substrate attachment (CSAT) antigen has properties of a receptor for laminin and fibronectin. J. Cell Biol. 101: 2134–2144 (1985).

    Article  CAS  PubMed  Google Scholar 

  58. R.O. Hynes, Integrins: A family of cell surface receptors. Cell 48: 549–554 (1987).

    Article  CAS  PubMed  Google Scholar 

  59. K. Burridge, K. Faith, T. Kelly, G. Nuckolls, and C. Turner, Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Ann. Rev. Cell BioL 4: 487525 (1988).

    Google Scholar 

  60. C. Damsky, KA. Knudsen, D. Bradley, CA. Buck, and A.F. Horwitz, Distribution of the cell substratum attachment (CSAT) antigen on myogenic and fibroblastic cells in culture. J. Cell BioL 100: 1528–1539 (1985).

    Article  CAS  PubMed  Google Scholar 

  61. D. Rifkin, and D. Moscatelli, Recent developments in the cell biology of basic fibroblast growth factor. J. Cell BioL 109: 1–6 (1989).

    Article  CAS  PubMed  Google Scholar 

  62. A Rizzino, Transforming growth factor-ß–multiple effects on cell differentiation and extracellular matrices. DeveL BioL 130: 411–422 (1988).

    Article  CAS  Google Scholar 

  63. S. Artavanis-Tsakonas, The molecular biology of the Notch locus and the fine tuning of differentiation in Drosophila. Trends Genetics 4: 95–100 (1988).

    Article  CAS  Google Scholar 

  64. A. Tomlinson, Cellular interactions in the developing Drosophila eye. Development 104: 183–193 (1988).

    CAS  PubMed  Google Scholar 

  65. W. Bender, Homeotic gene products as growth factors. Cell 43: 559–560 (1985).

    Article  CAS  PubMed  Google Scholar 

  66. D.R. Sibley, J.L. Benovic, M.G. Caron, and R.J. Lefkowitz, Regulation of transmembrane signaling by receptor phosphorylation. Cell 48: 913–922 (1987).

    Article  CAS  PubMed  Google Scholar 

  67. G. Carpenter, Receptors for epidermal growth factor and other polypeptide mitogens. Ann. Rev. Biochem. 56: 881–914 (1987).

    Article  CAS  PubMed  Google Scholar 

  68. G. Carpenter, and S. Cohen, Epidermal growth factor. Ann. Rev. Biochem. 48: 193–216 (1979).

    Article  CAS  PubMed  Google Scholar 

  69. K.C. Flanders, N.L. Thompson, D.C. Cissel, E. van Obberghen-Schilling, C.C. Baker, M.E. Kass, L.R. Ellingsworth, A.B. Roberts, and M.B. Sporn, Transforming growth factor-ßl: histochemical localization with antibodies to different epitopes. J. Cell BioL 108: 653–660 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Anderson, M.J., Swenarchuk, L.E., Champaneria, S. (1990). Localized Extracellular Proteolysis May Convey Inductive Signals Between Nerve and Muscle Cells During Synaptogenesis. In: Festoff, B.W., Hantaï, D. (eds) Serine Proteases and Their Serpin Inhibitors in the Nervous System. NATO ASI Series, vol 191. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8357-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8357-4_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8359-8

  • Online ISBN: 978-1-4684-8357-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics