Advertisement

Relationship Between Plasminogen Activators and Regeneration Capacities of Rat Skeletal Muscles

  • Georgia Barlovatz-Meimon
  • Éric Frisdal
  • Yann Bassaglia
  • Daniel Hantaï
  • Eduardo Anglés-Cano
  • Jean Gautron
Part of the NATO ASI Series book series (NSSA, volume 191)

Abstract

Mammalian skeletal muscle regeneration may be divided in two major parts. The first is a degenerative period leading to muscle atrophy as a result of the catabolic conditions due to tissue breakdown, cell death, and subsequent presence of large amounts of lysosomal and non lysosomal proteinases.1,2 The second step is characterized by tissue remodelling resulting in a relatively complete regeneration.3–8 This step was described by Bischoff 9 as dependent upon the capacity of neutral proteinases to digest the basement membrane. It involves changes in the amount and distribution of various components of the basement membrane10 such as fibronectin2, laminin and type IV collagen.12,13 The participation of the plasminogen activator (PA) system in these modifications has been described.14 In addition, a large amount of information links tissue remodelling to the activity of serine proteinases such as PAs.15

Keywords

Plasminogen Activator Satellite Cell Extensor Digitonlm Longus Muscle Regeneration Myogenic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.J. Pennington, Proteinases in Muscle, in: “Proteinases in Mammalian Cells an Tissues”, ed. A.J. Barett, Elsevier North Holland Biochemical Press, p 515 (1977).Google Scholar
  2. 2.
    K. Takahasi, Y. Ichihara, and K. Sogawa, Membrane bound neutral proteinase in the microsomal fraction of skeletal muscle; its occurrence and properties, in: “Muscular Dystrophy: Biomedical aspects”, eds. S. Ebashi and E. Osawa, Japan Sci. Soc. Press, Tokyo, p 305 (1983).Google Scholar
  3. 3.
    D. Allbrook, Skeletal muscle regeneration. Muscle and Nerve 4: 234 (1981).CrossRefPubMedGoogle Scholar
  4. 4.
    B.M. Carlson, The regeneration of skeletal muscle: a review. Am. J. Anat. 137: 119 (1973).CrossRefPubMedGoogle Scholar
  5. 5.
    B.M. Carlson, and JA. Faulkner, The regeneration of skeletal muscle fibers following injury: a review. Med. Sci. Sports Exercise 15: 187 (1983).CrossRefGoogle Scholar
  6. 6.
    A. Mauro, Satellite cell of skeletal muscle fibers, J. Biophys. Cytol. 9: 493 (1961).CrossRefPubMedGoogle Scholar
  7. 7.
    A. Mauro, in: “Muscle Regeneration” Raven Press, New-York (1979).Google Scholar
  8. 8.
    L.C. Maxwell, Muscle regeneration in nerve-intact and free skeletal muscle autografts in cats. Am. J. Physiol. 246: C96 (1984).PubMedGoogle Scholar
  9. 9.
    R. Bischoff, Tissue culture studies on the origin of myogenic cells during muscle regeneration in the rat, in: “Muscle Regeneration”, ed. A. Mauro, Raven Press, New-York, p 13 (1979).Google Scholar
  10. 10.
    A.K. Gulati, A.H. Reddi, and AA. Zalewski, Changes in the basement membrane zone components during skeletal muscle fiber degeneration and regeneration. J. Cell Biol. 97: 957 (1983).CrossRefPubMedGoogle Scholar
  11. 11.
    R. Hynes, and K. Yamada, Fibronectins: multifunctional modular glycoproteins. J. Cell Biol. 95: 369 (1982).CrossRefPubMedGoogle Scholar
  12. 12.
    R. Timpl, H. Rohde, P. Gehron Robey, S. Rennard, J.M. Foidart, and G. Martin, Laminin• a glycoprotein from basement membranes. J. Biol. Chem. 254: 9933 (1979).PubMedGoogle Scholar
  13. 13.
    R. Timpl, R. Glanville, G. Wick, and G. Martin, Immunocytochemical study on basement membrane (type IV) collagens. Immunology 38: 109 (1979).PubMedGoogle Scholar
  14. 14.
    D. Hantaï, and B.W. Festoff, Degradation of muscle basement membrane by locally generated plasmin. Exp. Neurol. 95: 44 (1987).CrossRefPubMedGoogle Scholar
  15. 15.
    K. Dario, P. Andreasen, J. Grondahl-Hansen, P. Kristensen, L. Nielsen, and L. Skriver, Plasminogen activators, tissue degradation and cancer. Adv. Cancer Res. 44: 139 (1985).CrossRefGoogle Scholar
  16. 16.
    P. Wallén, and P. Wiman, Characterization of human plasminogen. II. Separation and partial characterization of different molecular weight of human plasminogen. Biochem. Biophys. Acta 257, 122 (1972).PubMedGoogle Scholar
  17. 17.
    E. Anglés-Cano, A spectrometric solid-phase fribrin-tissue plasminogen activator activity assay (SOFIA-tPA) for high-fibrin-affinity tissue plasminogen activators. Analyt. Biochem. 153: 201 (1986).Google Scholar
  18. 18.
    M. Rânby, B. Norrman, and P. Wallén, A sensitive assay for tissue plasminogen activator. Thromb. Res. 27: 743 (1982).CrossRefPubMedGoogle Scholar
  19. 19.
    O.H. Lowry, N.J. Rosenborough, A.L. Farr, and R.J. Randall, Protein measurement with the Folin phenol reagent. J. Biol. Chem. 194: 265 (1951).Google Scholar
  20. 20.
    B. Lassalle, J. Gautron, I. Martelly, and A. Le Moigne, Image analysis of rat satellite cell proliferation in vitro. Cytotechnology 2: 213 (1989).CrossRefGoogle Scholar
  21. 21.
    R. Bischoff, and M. Lowe, Cell surface components and the interaction of myogenic cells, in: “Exploratory concepts in muscular dystrophy”, ed. Milhorat, Excerpta Medica, Amsterdam, Vol II, p 17 (1974).Google Scholar
  22. 22.
    G. Barlovatz-Meimon, Y Bassaglia, É. Frisdal, J. Gautron, A. Le Moigne, and I. Martelly, Do satellite cells isolated from fast and slow muscles and cultured in vitro remember their origin. I. Relationship between plasminogen activator expression, myogenic capacity and muscle regeneration. Cell Diff. Dev. 27: S66 (1989).Google Scholar
  23. 23.
    G. Barlovatz-Meimon, J. Lebrazi, and J. Gautron, Plasminogen activators in slow and fast Muscles. Anticancer Research 7: 895 (1987).Google Scholar
  24. 24.
    B.Carlson, Nerve-muscle interrelationships in mammalian skeletal muscle regeneration, in: “Control of cell proliferation and differentiation during regeneration”, ed. H.J. Anton, Monographs in Dev. Biol., Karger, Vol 21 p 49 (1988).Google Scholar
  25. 25.
    G. Barlovatz-Meimon, Mesure de la capacité d’inhibition rapide du tPA, in: “Progrès en hématologie: physiopatologie de l’hématologie”, eds. Y. Sultan and A.M. Fischer, Douin, Paris (1986).Google Scholar
  26. 26.
    M. Kidron, M. Dudai, I. Nachson, and M. Mayer, Protease inhibitor activity in human skeletal muscle. Biochem. Med. Met. Biol. 36: 136 (1986).CrossRefGoogle Scholar
  27. 27.
    G. Barlovatz-Meimon, É. Frisdal, D. Hantaï, E. Anglés-Cano, and J. Gautron, Slow and fast rat skeletal muscle differ in their plasminogen activator activities. Eur. J. Cell Biol In press.Google Scholar
  28. 28.
    H. Schmallbruch, and U. Hellhammer, The number of nuclei in adult rat muscles with special reference to satellite cells. Anat. Rec. 189: 169 (1977).CrossRefGoogle Scholar
  29. 29.
    M.C. Gibson, and E. Schultz, Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle and Nerve 6: 574 (1983).Google Scholar
  30. 30.
    D. Yaffe, Retention of differentiated potentialities during prolonged cultivation of myogenic cells. Proc. Natl. Acad. Sci. USA 61: 477 (1968).CrossRefPubMedGoogle Scholar
  31. 31.
    P. Heinman, and U. Herbort, Satellite cells densities in neuromuscular mutants of the mouse: lack of correlation with fiber degeneration, in: “Control of cell proliferation and differentiation during regeneration”, ed. H.J. Anton, Monographs in Dev. Biol., Karger, Vol 21 p 57 (1988).Google Scholar
  32. 32.
    D. Hantaï, J.S. Rao, C.B. Kahler, and B.W. Festoff, Plasminogen activator decline correlates with synapse elimination during neonatal development of skeletal muscle. Proc. Natl. Acad. Sci. USA 86: 362 (1989).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Georgia Barlovatz-Meimon
    • 1
  • Éric Frisdal
    • 1
  • Yann Bassaglia
    • 1
  • Daniel Hantaï
    • 2
  • Eduardo Anglés-Cano
    • 3
  • Jean Gautron
    • 1
  1. 1.MYREM, Université Paris XIICréteilFrance
  2. 2.INSERM U.153ParisFrance
  3. 3.INSERM U.143Le Kremlin-BicêtreFrance

Personalised recommendations