Plasminogen Activators in Development, Injury and Pathology of the Neuromuscular System

  • Daniel Hantaï
  • Claudine Soria
  • Jeannette Soria
  • Brigitte Blondet
  • Georgia Barlovatz-Meimon
  • Jasti S. Rao
  • Barry W. Festoff
Part of the NATO ASI Series book series (NSSA, volume 191)


The development of the neuromuscular junction entails a complex, cascade-like series of events that include the directed extension of neuronal processes, the sequential localized deposition, removal and redeposition of extracellular matrix (ECM) components, and, ultimately, stabilization of the macromolecular associations between the participating cells.1,2 The nature of these events suggests that the formation, maintenance and elimination of neuromuscular synapses may be regulated by locally expressed proteases and protease inhibitors acting on synaptic basement membrane (BM) associated molecules. In vitro experiments have shown that certain serine proteases, plasminogen activators (PAs), are released from neurite growth cones3,4 and that protease inhibitors profoundly affect neurite outgrowth.5 However in vivo evidence for the proteolytic control of synaptic junctions is lacking.


Amyotrophic Lateral Sclerosis Plasminogen Activator Neuromuscular Junction Basement Membrane Component Muscle Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.W. Sperry, Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl. Acad. Sci. USA 50: 703 (1963).CrossRefPubMedGoogle Scholar
  2. 2.
    M.J. Dennis, Development of the neuromuscular junction: inductive interactions between cells. Ann. Rev. Neurosci. 4: 43 (1981).CrossRefPubMedGoogle Scholar
  3. 3.
    A. Krystosek, and N.W. Seeds, Peripheral neurons and Schwann cells secrete plasminogen activator. J. Cell. Biol. 98: 773 (1984).CrossRefPubMedGoogle Scholar
  4. 4.
    R.N. Pittman, Release of plasminogen activator and a calcium-dependent metalloprotease from cultured sympathetic and sensory neurons. Hey. Biol. 110: 91 (1985).Google Scholar
  5. 5.
    D. Monard, Neuronal cell behaviour: modulation by protease inhibitors derived from non-neuronal cells. Cell Biol. Int. Rep. 9: 297 (1985).CrossRefPubMedGoogle Scholar
  6. 6.
    B.W. Festoff, D. Hantaï, J. Soria, A. Thomaïdis, and C. Soria, Plasminogen activator in mammalian skeletal muscle: characteristics of effect of denervation on urokinase-like and tissue-activator. J. Cell Biol. 103: 1415 (1986).Google Scholar
  7. 7.
    D. Hantaï, and B.W. Festoff, Degradation of muscle basement membrane by locally generated plasmin. Exp. Neurol. 95: 44 (1987).CrossRefPubMedGoogle Scholar
  8. 8.
    D. Hantaï, J.S. Rao, C. Kahler, and B.W. Festoff, Decrease in plasminogen activator correlates with synapse elimination during neonatal development of mouse skeletal muscle. Proc. Natl. Acad. Sci. USA 86: 362 (1989).CrossRefPubMedGoogle Scholar
  9. 9.
    B.W. Festoff, Role of neuromuscular junction macromolecules in the pathogenesis of amyotrophic lateral sclerosis. Med. Hypotheses 6: 121 (1980).CrossRefPubMedGoogle Scholar
  10. 10.
    D. Barker, and M.C. Ip, Sprouting and degeneration of mammalian motor axons in normal and deafferentated skeletal muscle. Proc. Roy. Soc. London B 163: 538 (1966).CrossRefGoogle Scholar
  11. 11.
    R. Miledi, and C.R. Slater, On the degeneration of rat neuromuscular junctions after nerve section. J. Physiol. (London) 207: 507 (1970).Google Scholar
  12. 12.
    E. Gutmann, and J. Zelenâ, Morphological changes in the denervated muscle, in: “The denervated muscle” Gutmann E (ed.), Czech. Acad. Sci. Publishing House, Prague, p 57 (1962).Google Scholar
  13. 13.
    H.L. Fernandez, M.J. Duell, and B.W. Festoff, Neurotrophic regulation of 16S acetylcholinesterase at the vertebrate neuromuscular junction. J. Neurobiol. 10: 442 (1979).CrossRefGoogle Scholar
  14. 14.
    B.W. Festoff, K.L. Oliver, and N.B. Reddy, In vitro studies of muscle membranes. Effects of denervation on the macromolecular components of cation transport in red and white skeletal muscle. J. Membr. Biol. 32: 345 (1977).CrossRefPubMedGoogle Scholar
  15. 15.
    S. Ramon y Cajal, Degeneration and regeneration of the nervous sytem, ed. May, R.M. Oxford University Press, London (1928).Google Scholar
  16. 16.
    M.V. Edds, Collateral nerve regeneration. Quart. Rev. Biol. 28: 260 (1953).CrossRefPubMedGoogle Scholar
  17. 17.
    A. Gorio, Sprouting and regeneration of peripheral nerve, in: “The Node of Ranvier” eds. J.C. Zagoren & S. Fedoroff, Academic Press, Orlando. p 353 (1984).Google Scholar
  18. 18.
    G.T. Vrbovâ, T. Gordon, and R. Jones, in: “Nerve-muscle interaction” Chapman and Hall, London p 105 (1978).Google Scholar
  19. 19.
    B.W. Festoff, M.R. Patterson, and K. Romstedt, Plasminogen activator: The major secreted neutral protease of cultured skeletal muscle cells. J. Cell Physiol. 110: 190 (1982).Google Scholar
  20. 20.
    B.W. Festoff, M.R. Patterson, D. Eaton, and J.B. Baker, Plasminogen activator and protease nexin in myogenesis. J. Cell Biol. 91: 43a (1981).Google Scholar
  21. 21.
    B.W. Festoff, and D. Hantai, Plasminogen activators and inhibitors: roles in muscle and neuromuscular regeneration. Prog. Brain Res. 71: 423 (1987).CrossRefPubMedGoogle Scholar
  22. 22.
    R.L. Beach, W.V. Burton, W.J. Hendricks, and B.W. Festoff, Extracellular matrix synthesis by skeletal muscle in culture: proteins and effect of enzyme degradation. J. Biol. Chem. 257: 11437 (1982).PubMedGoogle Scholar
  23. 23.
    M. Rânby, B. Norrman, and P. Wallén, A sensitive assay for tissue plasminogen activator. Thromb. Res. 27: 743 (1982).CrossRefPubMedGoogle Scholar
  24. 24.
    A. Granelli-Piperno, and E. Reich, A study of protease and protease inhibitor complexes in biological fluids. J. Exp. Med. 148: 223 (1983).CrossRefGoogle Scholar
  25. 25.
    K. Dario, PA. Andreasen, J. Grq ndahl-Hansen, P. Kristensen, L.S. Nielsen, and L. Skriver, Plasminogen activator, tissue degradation and cancer. Adv. Cancer Res. 44: 139 (1985).CrossRefGoogle Scholar
  26. 26.
    M.W. McCaman, Biochemical effects of denervation on normal and dystrophic muscle: acetylcholinesterase and choline acetyltransferase. Life Sci. 5: 1459 (1966).CrossRefPubMedGoogle Scholar
  27. 27.
    S. Tucek, Choline acetyltransferase activity in skeletal muscles after denervation. Exp. Neurol. 40: 23 (1973).CrossRefPubMedGoogle Scholar
  28. 28.
    V. Kielberg, PA. Andreasen, J. Grondahl-Hansen, L.S. Nielsen, L. Skriver, and K. Dant, Proenzyme to urokinase type plasminogen activator in the mouse in vivo. FEBS Lett. 182: 441 (1985).CrossRefGoogle Scholar
  29. 29.
    A. Mauro, Satellite cells of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9: 493 (1961).CrossRefPubMedGoogle Scholar
  30. 30.
    RA.D. O’Brien, A.J.C. Östberg, and G. Vrbova, Observations on the elimination of polyneuronal innervation and the developing mammalian skeletal muscle. J. Physiol. 282: 571 (1978).PubMedGoogle Scholar
  31. 31.
    D.C. Van Essen, Neuromuscular synapse elimination, in: “Neuronal Development” Spitzer N.C. (ed.) p 333 Plenum, New York (1982).Google Scholar
  32. 32.
    RA.D. O’Brien, A.J.C. Östberg, and G. Vrbova, The effect of acetylcholine on function and structure of the developing mammalian neuromuscular junction. Neurosci. 5: 1367 (1980).CrossRefGoogle Scholar
  33. 33.
    M.C. Brown, R.L. Holland, and W.G. Hopkins, Motor nerve sprouting. Ann. Rev. Neurosci. 4: 17 (1981).CrossRefPubMedGoogle Scholar
  34. 34.
    D. Hantaï, J.S. Rao, and B.W. Festoff, Serine proteases and serpins: their possible roles in the motor system. Rev. Neurol. (Paris) 144: 680 (1988).Google Scholar
  35. 35.
    J.M. Andrews, M.B. Gardner, F.J. Wolfgram, G.W. Ellison, D.D. Porter, and W.W. Brandkamp, Studies on a murine form of spontaneous lower motor neuron degeneration: the wobbler (wr) mouse. Am. J. Path. 76: 63 (1974).PubMedGoogle Scholar
  36. 36.
    J. H. La Vail, and K.P. Irons, Abnormal neuromuscular junctions in the lateral rectus muscle of wobbler mice. Brain Res. 463: 78 (1988).CrossRefGoogle Scholar
  37. 37.
    J.-M. Charcot, and A. Joffroy, Deux cas d’atrophie musculaire progressive avec lésions de la substance grise et des faisceaux antérolatéraux de la moelle épinière. Arch. Physiol. Norm. Path. 2: 354 (1869).Google Scholar
  38. 38.
    B. Wiman, G. Mellbring, and M. Rânby, Plasminogen activator release during venous stasis and exercise as determined by a new specific assay. Clin. Chem. Acta 127: 279 (1983).CrossRefGoogle Scholar
  39. 39.
    B.W. Festoff, and H.L. Fernandez, Plasma and red cell acetylcholinesterase in amyotrophic lateral sclerosis. Muscle Nerve 4: 41 (1981).CrossRefPubMedGoogle Scholar
  40. 40.
    D.C. Rijken, and D. Collen, Purification and characterization of the plasminogen activator secreted by human melanoma cells in culture. J. Biol. Chem. 256: 7035 (1981).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Daniel Hantaï
    • 1
  • Claudine Soria
    • 2
  • Jeannette Soria
    • 3
  • Brigitte Blondet
    • 1
    • 4
  • Georgia Barlovatz-Meimon
    • 4
  • Jasti S. Rao
    • 5
  • Barry W. Festoff
    • 5
  1. 1.INSERM U.153ParisFrance
  2. 2.Hôpital LariboisièreParisFrance
  3. 3.Hôtel DieuParisFrance
  4. 4.Université Paris-Val de MarneCréteilFrance
  5. 5.Department of Veterans Affairs Medical CenterKansas CityUSA

Personalised recommendations