Plasminogen Activator in the Developing Nervous System

  • Nicholas W. Seeds
  • Shahla Verrall
  • Paul McGuire
  • Glenn Friedman
Part of the NATO ASI Series book series (NSSA, volume 191)


Extensive cell migration and elaborate axonal growth are characteristic features of the developing nervous system. By the time many of the late generated neurons, such as cerebellar granule neurons, leave their site of origin in proliferating germinal zones and migrate to their permanent positions in the stratified nervous system, these migrating neurons are confronted by a morass of nerve fibers and extracellular matrix components. Although radial glial fibers1 and Purkinje cell dendrites2 may provide guidance toward the internal granule cell layer for migrating granule cells, the lead­ing growth cone has been proposed to “push” its way through the tissue .3 Ramon Cajal3 likened these growth cones to battering rams which possessed an enormous power of penetration. More recently the possibility that these neuronal movements may be facilitated by the cell’s ability to “cut” its way through the tissue has been explored 4–10 A likely candidate for the cutting activity is cell secreted plasminogen activator which is capable of generating the broad acting protease plasmin from the extracellular proenzyme plasminogen.


Plasminogen Activator Granule Cell Sensory Neuron Neurite Outgrowth Growth Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Rakic, Neuron-glia relationship during cell migration in developing cerebellar cortex, J. Comp. NeuroL 141: 283 (1971).Google Scholar
  2. 2.
    C. Sotelo and J. P. Changeux, Bergmann fibers and granule cell migration in the cerebellum of homozygous Weaver mutant mouse, Brain Res. 77: 484 (1974).CrossRefPubMedGoogle Scholar
  3. 3.
    R.S. Cajal, “Studies on Vertebrate Neurogenesis”, L. Guth, trans., Thomas Publ., Springfield, IL (1960).Google Scholar
  4. 4.
    A. Krystosek and N. W. Seeds, Plasminogen activator production by cultures of developing cerebellum, Fed. Proc. 37: 1702 (1978).Google Scholar
  5. 5.
    A. Krystosek and N. W. Seeds, Plasminogen activator release at the neuronal growth cone, Science 213: 1532 (1981).CrossRefPubMedGoogle Scholar
  6. 6.
    A. Krystosek and N. W. Seeds, Plasminogen activator secretion by granule neurons in cultures of developing cerebellum, Proc. Nat. Acad. Sci. 78: 7810 (1981).Google Scholar
  7. 7.
    H. Soreq and R. Miskin, Plasminogen activators in the rodent brain, Brain Res. 216: 361 (1981).CrossRefPubMedGoogle Scholar
  8. 8.
    G. Moonen, M. Grau-Wagemans and I. Selak, Plasminogen activator-plasmin system and neuronal migration, Nature 298: 753 (1982).CrossRefPubMedGoogle Scholar
  9. 9.
    R.N. Pittman, Release of plasminogen activator and a calcium-dependent metalloprotease from cultured sympathetic and sensory neurons, Dey. BioL 110: 91 (1985).Google Scholar
  10. 10.
    R.N. Pittman and A G Williams, Neurite penetration into collagen gels requires Ca+ + -dependent metalloprotease activity, Dey. Neurosci 11:41 (1988).Google Scholar
  11. 11.
    A.S. Todd, The histological localization of fibrinolysin activator, J.PathoL BacterioL 78: 281 (1959).CrossRefPubMedGoogle Scholar
  12. 12.
    J.C. Unkeless, S. Gordon and E. Reich, Secretion of plasminogen activator by stimulated macrophages, J. Exp. Med. 139: 834 (1974).CrossRefPubMedGoogle Scholar
  13. 13.
    P.G. McGuire and N. W. Seeds, The interaction of plasminogen activator with a reconstituted basement membrane matrix and extracellular macromolecules produced by cultured epithelial cells, J. Cell. Biochem. 40: 215 (1989).CrossRefPubMedGoogle Scholar
  14. 14.
    S. Verrall and N. W. Seeds, Characterization of 125I-tissue plasminogen activator binding to cerebellar granule neurons, J. Cell BioL 109: 265 (1989).CrossRefPubMedGoogle Scholar
  15. 15.
    R.J. Rickles, A. L. Darrow and S. Strickland, Molecular cloning of complementary DNA to mouse tissue plasminogen activator mRNA and its expression duringteratocarcinoma cell differentiation, J. BioL Chem. 263; 1563 (1988).PubMedGoogle Scholar
  16. 16.
    L. G. Davis, M. Dibner and J. Battey, “Basic Methods in Molecular Biology”, Elsevier, New York (1986).Google Scholar
  17. 17.
    R. R. Burk, A factor from a transformed cell line that affects cell migration, Proc. Nat. Acad. Sci. 70: 369 (1973).CrossRefGoogle Scholar
  18. 18.
    E. Reich, D. Rifkin and E. Shaw, “Proteases and Biological Control”, Cold Spring Harbor Lab, New York (1975).Google Scholar
  19. 19.
    K. DanO, P. Andreasen, J. Grondahl-Hansen, P. Kristensen, L. Nielsen and L. Skriver, Plasminogen activators, tissue degradation and cancer, Adv. Cancer Res. 44: 139 (1985).CrossRefGoogle Scholar
  20. 20.
    C. Heussen and E. B. Dowdle, Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing SDS and copolymerized substrates, AnaL Biochem. 102: 196 (1980).CrossRefPubMedGoogle Scholar
  21. 21.
    S. Verrall and N. W. Seeds, Tissue plasminogen activator binding to mouse cerebellar granule neurons, J. Neurosci. Res. 21: 420 (1988).Google Scholar
  22. 22.
    E. Salonen, O. Saksela, T. Vartio, A. Vaheri, L. Nielsen and J. Zeuthen, Plasminogen and tissue-type plasminogen activator bind to immobilized fibronectin, J. BioL Chem. 260: 12302 (1985).PubMedGoogle Scholar
  23. 23.
    S. Verrall, “Characterization and Purification of Tissue Plasminogen Activator and Its Binding to the Surface of Cerebellar Neurons”, Ph.D. Thesis Univ. Colorado HSC, Denver (1989).Google Scholar
  24. 24.
    T. Ny, F. Elgh and B. Lund, The structure of the human tissue-type plasminogen activator gene: correlation of intron and exon structures to functional and structural domains, Proc. Nat. Acad. Sd. 81: 5355 (1984).Google Scholar
  25. 25.
    A. J. van Zonnevald, H. Veerman and H. Pannekoek, Automonous functions of structural domains on human tissue-type plasminogen activator. Proc. Nat. Acad. Sci. 83: 4670 (1986).CrossRefGoogle Scholar
  26. 26.
    M. J. Gething, B. Adler, J. Boose, R. Gerald, E. Madison, D. McGooKey, R. Meidell, L. Roman and J. Sambrook, Variants of human tissue plasminogen activator that lack specific structural domains of the heavy chains, EMBO J. 7: 2731 (1988).Google Scholar
  27. 27.
    N. W. Seeds, K. Christensen, S. Haffke and J. Schoonmaker, Granule neuron migration involves proteolysis, in: “Molecular Aspects of Development and Aging’, J. Lauder (ed.), Allan R Liss Inc., New York (1989).Google Scholar
  28. 28.
    J. Altman, Autoradiographic and histological studies of postnatal neurogenesis II, J. Compar. NeuroL 128: 431 (1966).CrossRefGoogle Scholar
  29. 29.
    A. Krystosek and N. W. Seeds, Peripheral neurons and Schwann cells secrete plasminogen activator, J. Cell BioL 98: 773 (1984).CrossRefPubMedGoogle Scholar
  30. 30.
    R. L. Hawkins and N. W. Seeds, Effect of proteases and their inhibitors on neurite outgrowth from neonatal sensory ganglia in culture, Brain Res. 398: 63 (1986).CrossRefPubMedGoogle Scholar
  31. 31.
    R. L. Hawkins and N. W. Seeds, Protease inhibitors influence the direction of neurite outgrowth, Dev. Brain Res. 45: 203 (1989).Google Scholar
  32. 32.
    A. Krystosek and N. W. Seeds, Normal and malignant cells, including neurons deposit plasminogen activator on the growth substrata, Exp. Cell Res. 166: 31 (1986).CrossRefPubMedGoogle Scholar
  33. 33.
    P. G. McGuire and N. W. Seeds, Regenerating sensory neurons degrade fibronectin during the process of neurite outgrowth, J. Cell BioL 107: 374a (1988).Google Scholar
  34. 34.
    H. Soreq and R. Miskin, Plasminogen activator in the developing rat cerebellum, Dev. Brain Res. 11: 149 (1983).Google Scholar
  35. 35.
    R. J. Rickles and S. Strickland, Tissue plasminogen activator mRNA in murine tissues, FEES Lett. 229: 100 (1988).CrossRefGoogle Scholar
  36. 36.
    D. P. Beebe, Binding of tissue plasminogen activators to human umbilical vein endothelial cells. Thrombosis Res. 46: 241 (1987).CrossRefGoogle Scholar
  37. 37.
    E. S. Barnathan, A. Kuo, H. van der Keyl, K. McCrae, G. Larsen and D. Cines, Tissue type plasminogen activator binding to human endothelial cells, J. BioL Chem. 263: 7792 (1988).PubMedGoogle Scholar
  38. 38.
    E. G. Hoal, E. Wilson and E. Dowdle, The regulation of tissue plasminogen activator activity by human fibroblasts, Cell 34: 273 (1983).CrossRefPubMedGoogle Scholar
  39. 39.
    K. A. Hajjar, N. Hamel, P. Harpel and R. Nachman, Binding of tissue plasminogen activator to cultured human endothelial cells, J. Clin. Invest. 80: 1712 (1987).Google Scholar
  40. 40.
    A. Bajpai and J. B. Baker, Cryptic urokinase binding sites on human foreskin fibroblasts, Biochem. Biophys. Res. Comm. 133: 475 (1985).Google Scholar
  41. 41.
    M. Stoppelli, A. Corti, A. Soffientini, G. Cassani, F. Blasi and R. Assoian, Differentiation enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes, Proc. Nat. Acad. Sd. 82: 4939 (1985).Google Scholar
  42. J. D. Vassalli, D. Baccino and D. Belin, A cellular binding site for the Mr 55,000 form of the human plasminogen activator urokinase, J. Cell BioL 100:86 (1985). Google Scholar
  43. 43.
    F. Blasi, Structure and regulation of the surface receptor for human urokinase plasminogen activator, in: NATO-ARW “Serine Proteases and Serpins in the Nervous System”, B. Festoff (ed), Plenum Press, New York (1989).Google Scholar
  44. 44.
    J. Geunther, H. Nick and D. Monard, A glial derived neurite promoting factor with protease inhibitory activity, EMBO J. 4: 1963 (1985).Google Scholar
  45. 45.
    D. Monard, Cd-derived proteases and protease inhibitors as regulators of neurite outgrowth, Trends In NeuroSci. 11:541 (1988). CrossRefGoogle Scholar
  46. 46.
    D.Gurwitz and D Cunningham, Thrombin mediates and reverses neuroblastoma neurite outgrowth, Proc. Nat. Acad. Sci. 85:3440 (1988). CrossRefPubMedGoogle Scholar
  47. 47.
    J. P. Quigley, L. Gold, R. Schwimmer and L. Sullivan, Limited cleavage of cellular fibronectin by plasminogen activator purified from transformed cells, Proc. Nat. Acad. Sci. 84:2776 (1987). CrossRefPubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Nicholas W. Seeds
    • 1
  • Shahla Verrall
    • 1
  • Paul McGuire
    • 1
  • Glenn Friedman
    • 1
  1. 1.Department of Biochemistry, Biophysics and GeneticsUniversity of Colorado Medical SchoolDenverUSA

Personalised recommendations