Signal Transduction Chains Involved in the Control of the Fibrinolytic Enzyme Cascade

  • Wolf-Dieter Schleuning
  • Robert L. Medcalf
Part of the NATO ASI Series book series (NSSA, volume 191)


The fibrinolytic enzyme cascade is a summary term for several regulatory serine proteases and serine protease inhibitors, which cooperate in the digestion of extracellular matrix protein in processes of tissue repair, growth, and remodelling. Tissue-type plasminogen activator (t-PA) and urinary-type plasminogen activator (u-PA) activate the proenzyme plasminogen by the cleavage of a single peptide bond, converting it into plasmin, a proteolytic enzyme with a specificity similar to the pancreatic digestive enzyme trypsin. Plasminogen is synthesized in the liver and secreted into the bloodstream where it circulates in relatively large amounts (80160 mg/l). Blood plasma plasminogen provides a reservoir of proteolytic activity which is recruited for the removal of fibrin deposits or for the digestion of extracellular matrix proteins during morphogenesis, wound healing or malignant growth. t-PA and u-PA are structurally and enzymatically related. Both proteins display a characteristic mosaic molecular architecture: they consist of a series of structural motifs homologous to other proteins. Thus, starting from the amino terminus, t-PA is composed of a “finger” domain, which is found tandemly arranged in fibronectin; an epidermal growth factor (EGF) like motif, found likewise in various blood clotting factors, receptor proteins and developmentally regulatory proteins; two “kringle” regions, present in u-PA, plasminogen, prothrombin, clotting factor XII and apolipoprotein (a) and finally a sequence homologous to the pancreatic proteases trypsin, chymotrypsin, elastase and kallikrein. The “finger”- and one of the two “kringle”-domains are absent in u-PA.


Plasminogen Activator Plasminogen Activator Inhibitor Plasminogen Activator Activity Cell BioI Signal Transduction Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Bachmann, Fibrinolysis, Thrombosis and Haemostasis, J. Verstraete, H. R. Lijnen, Arnout (eds), Leuven University p 227 (1987).Google Scholar
  2. 2.
    D. Cohen, On the regulation and control of fibrinolysis. Thromb. Haemost. 43: 77 (1980).Google Scholar
  3. 3.
    D.J. Loskutoff, JA. van Mourik, LA. Erickson, and D. Lawrence, Detection of an unusually stable fibrinolytic inhibitor produced by bovine endothelial cells. Proc. Nat. Acad. Sci. USA 80: 2956 (1983).Google Scholar
  4. 4.
    R.K.O. Kruithof, J.D. Vassalli, W.-D. Schleuning, R.J. Mattaliano, and P. Bachmann, Purification and characterization of a plasminogen activator inhibitor from the histiocytic lymphoma cell-line U937. J. Biol. Chem. 261: 11207 (1986).Google Scholar
  5. 5.
    O. Saksela, and D.B. Rifkin, Cell associated plasminogen activation: Regulation and physiological functions. Ann. Rev. Cell Physiöl. 4: 93 (1988).Google Scholar
  6. 6.
    F. Blasi, J.D. Vassalli, and K. Dant, Urokinase type plasminogen activator: proenzyme receptor and inhibitors. J. Cell Biol. 104: 801 (1987).Google Scholar
  7. 7.
    Y. Nishizuka, Studies and perspectives of protein kinase C. Science 233: 305 (1986).CrossRefPubMedGoogle Scholar
  8. 8.
    Y Nishizuka, The molecular heterogeneity of protein kinase C and its implication for cellular regulation. Nature 334: 661 (1988).CrossRefPubMedGoogle Scholar
  9. 9.
    L. Stryer, and H.R. Bourne, G proteins: a family of signal transducers. Ann. Rev. Cell Biol. 2: 391 (1986).Google Scholar
  10. 10.
    E. J. Neer, and D.E. Clapham, Roles of G protein subunits in transmembrane signalling. Nature 333: 129 (1988).CrossRefPubMedGoogle Scholar
  11. 11.
    P.W. Majerus, T.M. Connolly, H. Deckmyn, T.S. Ross, T.H. Bross, H. Ishii, V.S. Bansal, and D.B. Wilson, The metabolism of phosphoinositide-derived messenger molecules. Science 234: 1519 (1986).CrossRefPubMedGoogle Scholar
  12. 12.
    H. Rasmussen, The calcium messenger system. New Engl. J. Med. 314: 1094 (1986).Google Scholar
  13. 13.
    M.E. Greenberg, and E.B. Ziff, Stimulation of 3T3 cells induces transcription of the c fos protooncogene. Nature 311: 433 (1984).CrossRefPubMedGoogle Scholar
  14. 14.
    P. Angel, M. Imagawa, R. Chiu, B. Stein, R.J. Imbra, H.J. Rahmsdorf, C. Jonat, P. Herrlich, and M. Karin, Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49: 720 (1987).CrossRefGoogle Scholar
  15. 15.
    W.H. Landschulz, P.F. Johnson, and S.L. McKnight, The Leucine Zipper: A hypothetical structure common to a new class of DNA binding proteins. Science 240: 1759 (1988).Google Scholar
  16. 16.
    M. Wigler, and I.B. Weinstein, Tumour promoter induces plasminogen activator. Nature 259: 232 (1976).CrossRefPubMedGoogle Scholar
  17. 17.
    E.K. Waller, and W.-D. Schleuning, Induction of fibrinolytic activity in HeLa cells by phorbol myristate acetate. Tissue-type plasminogen activator antigen, and mRNA augmentation require intermediate protein biosynthesis. J. Biol. Chem. 260: 6354 (1985).PubMedGoogle Scholar
  18. 18.
    A.R. Montminy, KA. Sevarino, JA. Wagner, G. Mandel, and R.H. Goodman, Identification of a cyclic AMP responsive element within the rat somatostatin gene. Proc. Natl. Acad. Sci. USA 83: 6682 (1986).Google Scholar
  19. 19.
    M.P. Stoppelli, P. Verde, G. Grimaldi, E.K. Locatelli, and F. Blasi, Increase in urokinase plasminogen activator mRNA synthesis in human carcinoma cells is a primary effect of the potent tumour promoter, phorbol myristate acetate. J. Cell Biol. 102: 1235 (1986).Google Scholar
  20. 20.
    D. Belin, F. Godeau, and J D Vassalli, Tumor promoter PMA stimulates the synthesis and secretion of mouse prourokinase in MSV-transformed 3T3 cells; this is mediated by an increase in urokinase mRNA content. EMBO J. 3: 1901 (1984).Google Scholar
  21. 21.
    J.L. Degen, R.D. Estensen, Y. Nagamine, and E. Reich, Induction and desensitization of plasminogen activator gene expression by tumor promoters. J. Biol. Chem. 260: 12426 (1985).Google Scholar
  22. 22.
    Y. Nagamine, M. Sudol, and E. Reich, Hormonal regulation of plasminogen activator mRNA production in porcine kidney cells. Cell 32: 1181 (1983).CrossRefPubMedGoogle Scholar
  23. 23.
    W.-D. Schleuning, R.L. Medcalf, K. Hession, R. Rothenbühler, A. Shaw, and E.KO. Kruithof, Plasminogen activator inhibitor 2: regulation of gene transcription during phorbol ester mediated differentiation of U-937 human histiocytic lymphoma cells. Mol. Cell Biol. 7: 4564 (1987).Google Scholar
  24. 24.
    T. Hunter, and JA. Cooper, Protein-tyrosine kinases. Ann. Rev. Biochem. 54: 897 (1985).CrossRefGoogle Scholar
  25. 25.
    L.S. Lee, and I.B. Weinstein, Epidermal growth factor, like phorbol esters, induces plasminogen activator activity in HeLa cells. Nature 274: 4406 (1978).Google Scholar
  26. 26.
    G. Grimaldi, P. DiFiore, E.K Locatelli, J. Falco, and F. Blasi, Modulation of urokinase plasminogen activator gene expression during the transition from quiescent to proliferative state in normal mouse cells. EMBO J. 5: 855 (1986).Google Scholar
  27. 27.
    C.L. Lucore, S. Fujii, T.-C. Wun, B.E. Sobel, and J.J. Billadello, Regulation of the expression of type 1 plasminogen activator inhibitor in Hep G2 cells by epidermal growth factor. J. Biol. Chem. 263: 15845 (1988).Google Scholar
  28. 28.
    M.G. Catelli, N. Binart, I. Jung-Testas, J.M. Renoir, E.E. Beaulieu, J.R. Feramisco, and W.J. Welch, The common 90 kd protein component of non-transformed 8 S steroid receptors is a heat-shock protein. EMBO J. 4: 3131 (1985).Google Scholar
  29. 29.
    G. Schütz, Control of gene expression by steroid hormones. Biol. Chem. Hoppe-Seyler 77 (1988).Google Scholar
  30. 30.
    R.M. Evans, The steroid and thyroid hormone receptor superfamily. Science 240: 889 (1988).CrossRefPubMedGoogle Scholar
  31. 31.
    J.D. Vassalli, J. Hamilton, and E. Reich, Macrophage plasminogen activator: modulation of enzyme production by anti-inflammatory steroids, mitotic inhibitors, and cyclic nucleotides. Cell 8: 271 (1976).CrossRefPubMedGoogle Scholar
  32. 32.
    R.L. Medcalf, R.I. Richards, R.J. Crawford, and J. Hamilton, Suppression of urokinase-type plasminogen activator mRNA levels in human fibrosarcoma cells and synovial fibroblasts by anti-inflammatory glucocorticoids. EMBO J. 5: 2217 (1986).Google Scholar
  33. 33.
    N. Busso, D. Belin, C. Failly-Crépin, and J.D. Vassalli, Glucocorticoid modulation of plasminogen activators and one of their inhibitors in the human mammary carcinoma cell line MDA-MB-321. Cancer Res. 47: 364 (1987).PubMedGoogle Scholar
  34. 34.
    PA. Andreasen, C. Pyke, A. Riccio, P. Kristensen, L.S. Nielsen, L.R. Lund, F. Blasi, and K. Dan0, Plasminogen activator inhibitor type 1 biosynthesis and mRNA level are increased by dexamethasone in human fibrosarcoma cells. Mol. Cell Biol. 7: 3021 (1987).Google Scholar
  35. 35.
    R.L. Medcalf, E. Van den Berg, and W.-D. Schleuning, Glucocorticoid modulated gene expression of tissue and urinary-type plasminogen activator and plasminogen activator inhibitor 1 and 2. J. Cell Biol. 106: 971 (1988).Google Scholar
  36. 36.
    N. Busso, D. Belin, C. Failly-Crépin, and J.D. Vassalli, Plasminogen activators and their inhibitors in a human mammary cell line (HBL-100). Modulation by glucocorticoids. J. Biol. Chem. 261: 9309 (1986).Google Scholar
  37. 37.
    Y.S. Lin, and M.R. Green, Interaction of a common transcription factor, ATF, with regulatory elements in both EIA and cyclic AMP-inducible promoters. Proc. Natl. Acad. Sci. 84: 3396 (1988).Google Scholar
  38. 38.
    T. Hai, F. Liu, EA. Allegretto, M. Karin, and M.R. Green, A family of immunologically related transcription factors that includes multiple forms of ATF and AP-1. Genes and Development 2: 1216 (1988).CrossRefPubMedGoogle Scholar
  39. 39.
    L. Santell, and E.G. Levin, Cyclic AMP potentiates phorbol ester stimulation of tissue plasminogen activator release and inhibits secretion of plasminogen activator inhibitor-1 from human endothelial cells. J. Biol. Chem. 263: 16802 (1988).Google Scholar
  40. 40.
    R.J. Rickles, A.L. Darrow, and S. Strickland, Differentiation response elements in the 5’ region of the mouse tissue plasminogen activator gene confer two stage regulation by retinoic acid and cyclic AMP in teratocarcinoma cells. Mol. Cell Biol. 9: 1691 (1989).Google Scholar
  41. 41.
    J. Huarte, D. Belin, and J.D. Vassalli, Plasminogen activator in mouse and rat oocytes: induction during meiotic maturation. Cell 43: 551 (1985).CrossRefPubMedGoogle Scholar
  42. 42.
    Y.-X. Lui, and A.J.W. Hsueh, Plasminogen activator activity in cumulus-oocyte complexes of gonadotropin-treated rats during the periovulatory period. Biol. Reprod. 36: 1055 (1988).Google Scholar
  43. 43.
    TA. Bicsak, S.B. Cajander, X.-R. Peng, T. Ny, P.S. LaPolt, J.K.H. Lu, P. Kristensen, A. Tsafriri, and A.J.W. Hsueh, Tissue-type plasminogen activator activity in rat oocytes: expression during the periovulatory period, after fertilization, and during follicular atresia. Endocrinology 124: 187 (1989).CrossRefPubMedGoogle Scholar
  44. 44.
    T. Ny, L. Bjersing, A.J.W. Hsueh, and D.J. Loskutoff, Cultured granulosa cells produce two plasminogen activators and an antiactivator, each regulated differently by gonadotropins. Endocrinology 116: 1666 (1985).CrossRefPubMedGoogle Scholar
  45. 45.
    R. Reich, R. Miskin, and A. Tsafriri, Intrafollicular distribution of plasminogen activators and their hormonal regulation in vivo. Endocrinology 119: 1588 (1986).CrossRefPubMedGoogle Scholar
  46. 46.
    B. Casslén, A. Andersson, I.M. Nilsson, and B. Astedt, Hormonal regulation of the release of plasminogen activators and of a specific activator inhibitor from endometrial tissue in culture. Proc. Soc. Exp. Biol. Med. 182: 419 (1986).Google Scholar
  47. 47.
    T.J. Todaro, C. Fryling, and J.B. DeLarco, Transforming growth factors produced by certain human tumor cells: polypeptides that interact with epidermal growth factor receptors. Proc. Natl. Acad. Sci. USA 77: 5258 (1980).Google Scholar
  48. 48.
    J. Keski-Oja, F. Blasi, É.B. Leof, and H.L. Moses, Regulation of the synthesis and activity of urokinase plasminogen activator in A549 human lung carcinoma cells by transforming growth factor-ß. J. Cell Biol. 106: 451 (1988).Google Scholar
  49. 49.
    M. Laiho, O. Saksela, PA. Andreasen, and J. Keski-Oja, Enhanced production and extracellular deposition of the endothelial-type plasminogen activator inhibitor in cultured human lung fibroblasts by transforming growth factor-ß. J. Cell Biol. 103: 2403 (1986).Google Scholar
  50. 50.
    L.R. Lund, A. Riccio, PA. Andreasen, L.S. Nielsen, P. Kristensen, M. Laiho, O. Saksela, F. Blasi, and K. Dano, Transforming growth factor ß is a strong and fast acting positive regulator of the levels of type-1 plasminogen activator inhibitor mRNA in W1–39 human lung fibroblasts. EMBO J. 6: 1281 (1987).Google Scholar
  51. 51.
    D.R. Edwards, G. Murphy, J.J. Reynolds, S.B. Whitham, A.J.P. Doeherty, P. Angel, and J.K. Heath, Transforming growth factor-ß modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J. 6: 1899 (1987).Google Scholar
  52. 52.
    RA. Ignotz, and J. Massagué, Transforming growth factor-ß stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J. Biol. Chem. 261: 4337 (1986).Google Scholar
  53. 53.
    P. Rossi, G. Karenty, A.B. Roberts, N.S. Roche, M.B. Sporn, and B. de Crombrugghe, A nuclear factor 1 binding site mediates the transcriptional activation of a type 1 collagen promoter by transforming growth factor-ß. Cell 52: 405 (1988).CrossRefPubMedGoogle Scholar
  54. 54.
    R.L. Medcalf, E.K.O. Kruithof, and W.-D. Schleuning, Plasminogen activator inhibitor 1 and 2 are tumor necrosis factor/cachectin responsive genes. J. Exp. Med. 168: 751 (1988).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Wolf-Dieter Schleuning
    • 1
  • Robert L. Medcalf
    • 1
  1. 1.Central Hematology LaboratoryUniversity of Lausanne Medical School (CHUV)CH-LausanneSwitzerland

Personalised recommendations