Induction of the Urokinase-Type Plasminogen Activator Gene by Cytoskeleton-Disrupting Agents

  • Florence M. Botteri
  • Herman van der Putten
  • Bhanu Rajput
  • Kurt Ballmer-Hofer
  • Yoshikuni Nagamine
Part of the NATO ASI Series book series (NSSA, volume 191)


The interaction of a cell with specific components of the extracellular matrix can result in alterations of cell-shape and morphology.12 To a large extent such structural changes are the consequence of modifications of the cytoskeletal network. Dynamic cytoskeletal changes take place in migrating cells as well as in transformed cells.3 Most likely, migration of normal or metastatic tumor cells requires the expression of specific endogenous genes whose products assist in reshaping the intracellular cytoskeleton and the extracellular matrix. How and whether changes in cell morphology and cytoskeletal components may cause alterations in the expression of certain genes has not yet been investigated extensively.


Phorbol Myristate Acetate Salmon Calcitonin Phorbol Myristate Acetate Cytoskeletal Structure Cytoskeletal Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Ungar, B. Geiger, and A. Ben-Ze’ev, Cell contact-and shape-dependent regulation of vinculin synthesis in cultured fibroblasts. Nature 319: 787 (1986).CrossRefPubMedGoogle Scholar
  2. 2.
    A. Ben-Ze’ev, G.S. Robinson, N.L.R. Bucher, and S.R. Farmer, Cell-cell and cell-matrix interactions differentially regulate the expression of hepatic and cytoskeletal genes in primary cultures of rat hepatocytes. Proc. Natl. Acad. Sci. USA 85: 2161 (1988).CrossRefPubMedGoogle Scholar
  3. 3.
    A. Ben-Ze’ev, The cytoskeleton in cancer cells. Biochem. Biophys. Acta 780: 197 (1985).PubMedGoogle Scholar
  4. 4.
    J.E. Valinsky, E. Reich, and N.M. Le Douarin, Plasminogen activator in the bursa of Fabricius: correlations with morphogenetic remodeling and cell migrations. Cell 25: 471 (1981).CrossRefPubMedGoogle Scholar
  5. 5.
    J.E. Valinsky, and N.M. Le Douarin, Production of plasminogen activator by migrating cephalic neural crest cells. EMBO J. 4: 1403 (1985).Google Scholar
  6. 6.
    K. Danø, PA. Andreasen, J. Grondahl-Hansen, P. Kristensen, L. S. Nelson, and L. Skriver, Plasminogen activators, tissue degradation and cancer. Adv. Cancer Res. 44: 139 (1985).CrossRefPubMedGoogle Scholar
  7. 7.
    Y. Nagamine, M. Sudol, and E. Reich, Hormonal regulation of plasminogen activator mRNA production in porcine kidney cells. Cell 32: 1181 (1983).CrossRefPubMedGoogle Scholar
  8. 8.
    Y. Nagamine, D. Pearson, M.S. Altus, and E. Reich, cDNA and gene nucleotide sequence of porcine plasminogen activator. Nucleic Acids Res. 12: 9525 (1984).CrossRefPubMedGoogle Scholar
  9. 9.
    A.P. Feinberg, and B. Vogelstein, A technique for. radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132: 6 (1983).CrossRefPubMedGoogle Scholar
  10. 10.
    P. Chomczynski, and N. Sacchi, Single-step method of RNA isolation by acid guanidinium thyocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156 (1987).CrossRefPubMedGoogle Scholar
  11. 11.
    L. Andrus, M.S. Altus, D. Pearson, M. Grattan, and Y. Nagamine, hsp70 mRNA accumulates in LLC-PK1 pig kidney cells treated with calcitonin but not with 8-bromo-cyclic AMP. J. Biol. Chem. 263: 6183 (1988).Google Scholar
  12. 12.
    B.A. Hemmings, CAMP mediated proteolysis of the catalitic subunit of cAMP-dependent protein kinase. FEBS Lett. 196: 126 (1986).CrossRefPubMedGoogle Scholar
  13. 13.
    F.L. Graham, and A.J. van der Eb, A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52: 456 (1973).CrossRefPubMedGoogle Scholar
  14. 14.
    C.M. Gorman, L.F. Moffat, and B.H. Howard, Recombinant genomes which express choramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2: 1044 (1982).PubMedGoogle Scholar
  15. 15.
    B. Hogan, F. Costantini, and E. Lacy, in: “Manipulating the Mouse Embryo: A laboratory manual’ Cold Spring Harbor, New York: Cold Spring Habor Laboratory (1986).Google Scholar
  16. 16.
    J.R. Sanes, J.L.R. Rubenstein, and J.-L. Nicolas, Use of recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J. 5: 3133 (1986).Google Scholar
  17. 17.
    E.W. Taylor, The mechanism of colchicine inhibition of mitosis. J. Cell. Biol. 25: 145 (1965).CrossRefGoogle Scholar
  18. 18.
    G.G. Borisy, and E.W. Taylor, The mechanism of action of colchicine. J. Cell. Biol. 34: 525 (1967).CrossRefGoogle Scholar
  19. 19.
    J.L. Degen, R.D. Estensen, Y. Nagamine, and E. Reich, Induction and desensitization of plasminogen activator gene expression by tumor promoters. J. Biol. Chem. 260: 12426 (1985).PubMedGoogle Scholar
  20. 20.
    M.D. Flanagan, and S. Lin, Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin. J. Biol. Chem. 255: 835 (1980).PubMedGoogle Scholar
  21. 21.
    J.H. Hartwig, and T.P. Stossel, Cytochalasin B and the structure of actin gels. J. Mol. Biol. 134: 539 (1979).Google Scholar
  22. 22.
    S. MacLean-Fletcher, and T.D. Pollard, Mechanism of action of cytochalasin B on actin. Cell 20: 329 (1980).CrossRefPubMedGoogle Scholar
  23. 23.
    PA. Insel, and M.S. Kennedy, Colchicine potentiates beta-adrenoreceptor-stimulated cyclic AMP in lymphoma cells by an action distal to the receptor. Nature 273: 471 (1978).CrossRefPubMedGoogle Scholar
  24. 24.
    B.D. Cherksey, JA. Zadunaisky, and R.B. Murphy, Cytoskeletal constraint of the beta-adrenergic receptor in frog erythrocyte membranes. Proc. Natl. Acad. Sci. USA 77: 6401 (1980).CrossRefPubMedGoogle Scholar
  25. 25.
    N.E. Sahyoun, H. LeVine III, J. Davis, G.M. Hebdon, and P. Cuatrecasas, Molecular complexes involved in the regulation of adenylate cyclase. Proc. Natl. Acad. Sci. USA 78: 6158 (1981).CrossRefPubMedGoogle Scholar
  26. 26.
    M.M. Rasenick, P.J. Stein, and M.W. Bitensky, The regulatory subunit of adenylate cyclase interacts with cytoskeletal components. Nature 294: 560 (1981).CrossRefPubMedGoogle Scholar
  27. 27.
    K.E. Carlson, M.J. Woolkalis, M G Newhouse, and D.R. Manning, Fractionation of the beta subunit common to guanine nucleotide-binding regulatory proteins with the cytoskeleton. Molec. Pharmacol. 30: 463 (1986).Google Scholar
  28. 28.
    M. Schliwa, T. Nakamura, K.R. Porter, and U. Euteneuer, A tumor promoter induces rapid and coordinated reorganisation of actin and vinculin in cultured cells. J. Cell Biol. 99: 1045 (1984).Google Scholar
  29. 29.
    B. Herman, MA. Harrington, N.E. Olashaw, and W.J. Pledger, Identification of the cellular mechanisms responsible for platelet-derived growth factor induced alterations in cytoplasmic vinculin distribution. J. Cell. Physiology 126: 115 (1986).CrossRefGoogle Scholar
  30. 30.
    D. Kalderon, B.L. Roberts, W.D. Richardson, and A.E. Smith, A short amino acid sequence able to specify nuclear location. Cell 39: 499 (1984).CrossRefPubMedGoogle Scholar
  31. 31.
    M. Järvinen, J. Ylänne, T. Vartio, and I. Virtanen, Tumor promoter and fibronectin induce actin stress fibers and focal adhesion sites in spreading human erythroleukemia (HEL) cells. Europ. J. Cell Biol. 44: 238 (1987).PubMedGoogle Scholar
  32. 32.
    N.M. Mironov, V.V. Lobanenkov, and G.H. Goodwin, The distribution of nuclear proteins and transcriptionally-active sequences in rat liver chromatin fractions. Exp. Cell Res. 167: 391 (1986).CrossRefPubMedGoogle Scholar
  33. 33.
    R. Abulafia, A. Ben-Ze’ev, N. Hay, and Y. Aloni, Control of late simian virus 40 transcription by the attenuation mechanism and transcriptionally active ternary complexes are associated with the nuclear matrix. J. Mol. Biol. 172: 467 (1984).CrossRefPubMedGoogle Scholar
  34. 34.
    S.M. Rose, and W.T. Garrard, Differentiation-dependent chromatin alterations precede and accompany transcription of immunoglobulin light chain genes. J. Biol. Chem. 259: 8534 (1984).Google Scholar
  35. 35.
    R. Reeves, and D. Chang, Investigations of the possible functions for glycosylation in the high mobility group proteins. J. Biol. Chem. 258: 679 (1983).Google Scholar
  36. 36.
    G. Fleischmann, G. Pflugfelder, E.K. Steiner, K. Javaherian, G.C. Howard, J.C. Wand, and S.C.R. Elgin, Drosophila DNA topoisomerase I is associated with transcriptionally active regions of the genome. Proc. Natl. Acad. Sci. USA 81: 6958 (1984).Google Scholar
  37. 37.
    A. Raz, and A. Ben-Ze’ev, Modulation of the metastatic capability in B16 melanoma by cell shape. Science 221: 1307 (1983).CrossRefPubMedGoogle Scholar
  38. 38.
    V.J. Hearing, L.W. Law, A. Corti, E. Appella, and F. Blasi, Modulation of metastatic potential by cell surface urokinase of murine melanoma cells. Cancer Res. 48: 1270 (1988).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Florence M. Botteri
    • 1
  • Herman van der Putten
    • 2
  • Bhanu Rajput
    • 1
  • Kurt Ballmer-Hofer
    • 1
  • Yoshikuni Nagamine
    • 1
  1. 1.Friedrich Miescher-InstitutBaselSwitzerland
  2. 2.BiotechnologyCiba-Geigy AGBaselSwitzerland

Personalised recommendations