Advertisement

Magnetic Susceptibility of Biological Materials

  • F. E. Senftle
  • W. P. Hambright

Abstract

Although the field of biomagnetism is a relatively young branch of science, an extensive bibliography on various aspects of the subject(1) has developed within recent years. If one examines this bibliography, it is evident that a rather small part of this work has been expended in obtaining fundamental quantitative magnetic data on biological materials, such as magnetic susceptibilities of tissue, cell fluids, etc. In part, this is due to the nature of the material. Biological specimens are usually very complex and variable, and hence it is difficult to attach a meaningful quantitative value to such specimens. Moreover, biological specimens generally contain considerable water and other fluids which make significant measurements more difficult to obtain than on solid samples. Nevertheless, if the science of biomagnetism is to progress, one must interpret and explain the ever-increasing number of biological effects produced by magnetic fields. Ultimately one must examine these results in the light of the magnetic properties of the constituents of tissue, cells, blood, etc., and the biochemicals which constitute them.

Keywords

Electron Spin Resonance Magnetic Susceptibility Biological Material Iron Atom Unpaired Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Gross, in: Biological Effects of Magnetic Fields (M. F. Barnothy, ed.) Vol. 1, p. 27, Plenum Press, New York (1964).Google Scholar
  2. 2.
    L. M. Mulay, Anal. Chem. 34: 343R (1962).CrossRefGoogle Scholar
  3. 3.
    R. S. Nyholm, J. Inorg. Nucl. Chem. 8: 401 (1958).CrossRefGoogle Scholar
  4. 4.
    A. R. Kauffmann, “Magnetic methods of analysis,” in: Physical Methods in Chemical Analysis ( W. G. Berl, ed.) Academic Press, New York (1951).Google Scholar
  5. 5.
    B. N. Figgis and J. Lewis, in: Modern Coordination Chemistry (J. Lewis and R. G. Wilkins, ed.) Chap. 6, Interscience Publishers Inc., New York (1960).Google Scholar
  6. 6.
    W. Klemm, Magnetochemie, Akademische Verlagsgesellschaft, Leipzig (1936).Google Scholar
  7. 7.
    P. W. Selwood, Magnetochemistry, Interscience Publishers Inc., New York, 2nd ed. (1956).Google Scholar
  8. 8.
    L. F. Bates, Modern Magnetism, Cambridge University Press, Cambridge (1961).Google Scholar
  9. 9.
    E. C. Stoner, Magnetism and Matter, Methnen and Co., Ltd., London (1934).Google Scholar
  10. 10.
    J. H. Van Vleck, Electric and Magnetic Susceptibilities, Oxford University Press, London (1932).Google Scholar
  11. 11.
    P. Pascal, Ann. Chin. Phys. 19: 5 (1910);Google Scholar
  12. P. Pascal, Ann. Chin. Phys. 25: 289 (1912);Google Scholar
  13. P. Pascal, Ann. Chin. Phys. 29: 218 (1913).Google Scholar
  14. 12.
    L. Pauling, J. Am. Chem. Soc. 53: 1367 (1931);CrossRefGoogle Scholar
  15. L. Pauling, J. Am. Chem. Soc. 54: 988 (1932).CrossRefGoogle Scholar
  16. 13.
    L. E. Orgel, An Introduction to Transition-Metal Chemistry: Ligand Field Theory, Methuen and Co., Ltd., London (1962).Google Scholar
  17. 14.
    C. J. Ballhausen, Introduction to Ligand Field Theory, McGraw Hill Book Co., New York (1962).Google Scholar
  18. 15.
    B. N. Figgis, Introduction to Ligand Fields, Interscience Publishers, Inc., New York (1966).Google Scholar
  19. 16.
    L. Pauling and C. D. Coryell, Proc. Natl. Acad. Sci. U.S. 22: 210 (1936).CrossRefGoogle Scholar
  20. 17.
    J. M. Barnothy, Medical Physics, (U. Glasser, ed.) Vol. 3, p. 61, The Year Book Publisher (1960).Google Scholar
  21. 18.
    I. L. Mulay and L. N. Mulay, 190: 1019 (1961).CrossRefGoogle Scholar
  22. 19.
    F. E. Senftle and A. Thorpe, Nature 190: 410 (1961).CrossRefGoogle Scholar
  23. 20.
    M. Faraday, Phil. Trans. Part 1 (1846).Google Scholar
  24. 21.
    F. E. Senftle and A. Thorpe, Nature 194: 673 (1962).CrossRefGoogle Scholar
  25. 22.
    F. E. Senftle and A. Thorpe, Proc. Instr. Soc. Am. 8: 51–52 (1962);Google Scholar
  26. F. E. Senftle and A. Thorpe, Trans. Instr. Soc. Am. 2: 117–120 (1963).Google Scholar
  27. 23.
    M. Blackman and N. D. Lisgarten, Proc. Roy. Soc. (London) A239: 93 (1957).Google Scholar
  28. 24.
    H. T. Meryman, Science 124: 515 (1956).CrossRefGoogle Scholar
  29. 25.
    C. V. Lusena, Arch. Biochem. Biophys. 57: 277 (1955).CrossRefGoogle Scholar
  30. 26.
    C. V. Lusena, Ann. N. Y. Acad. Sci. 85: 541 (1960).CrossRefGoogle Scholar
  31. 27.
    A. Thorpe and F. E. Senftle, unpublished data.Google Scholar
  32. 28.
    T. J. Gray, The Defect Solid State, p. 283, Interscience Publishers, New York (1957).Google Scholar
  33. 29.
    S. S. Gill, C. P. Malone, and M. Downing, Rev. Sci. Instr. 31: 1209 (1960).CrossRefGoogle Scholar
  34. 30.
    S. S. Gill and M. Downing, University of Colorado Annual Progress Report Contribution Nonr. 1147(08) Nov. 27 (1961).Google Scholar
  35. 31.
    Y. Sugiura and S. Koga, J. Gen. Appl. Microbio. (Tokyo) 10: 57 (1964).CrossRefGoogle Scholar
  36. 32.
    E. Bauer and A. Raskin, Nature 138: 801 (1936).CrossRefGoogle Scholar
  37. 33.
    N. Perakis, Compt. Rend. 208: 1534 (1939).Google Scholar
  38. 34.
    J. H. Bauman and J. W. Harris, J. Lab. Clin. Med. 70: 246 (1967).Google Scholar
  39. 35.
    J. E. Falk, Porphyrins and Metalloporphyrins, Elsevier Publishing Co., New York (1964).Google Scholar
  40. 36.
    R. Lemberg and J. W. Legge, Hematin Compounds and Bile Pigments, Interscience Publishers, Inc., New York (1949).Google Scholar
  41. 37.
    J. Plücker, Poggen. Ann. d. Physik u. Chemie 73: 575 (1848).Google Scholar
  42. 38.
    A. Gamgee, Proc. Roy. Soc. (London) 68: 503 (1901).CrossRefGoogle Scholar
  43. 39.
    H. Kudo, Acta Med. Scand. 81: 511 (1934).CrossRefGoogle Scholar
  44. 40.
    F. Haurowitz and H. Kittel, Ber. Deut. Chem. Ges. 66B: 1046 (1933).CrossRefGoogle Scholar
  45. 41.
    C. Courty, Thesis, Faculty of Sciences, University of Paris (1935).Google Scholar
  46. 42.
    L. Cambi and L. Szegö, Rend. Ist. Lombardo Sci. 67: 275 (1934).Google Scholar
  47. 43.
    D. Brocq-Rousser, Le Progres Medical, No. 27, p. 1018 (1937).Google Scholar
  48. 44.
    R. Jonnard, Compt. Rend. 204: 121 (1921).Google Scholar
  49. 45.
    L. Pauling and C. D. Coryell, Proc. Natl. Acad. Sci. U.S. 22: 159 (1936).CrossRefGoogle Scholar
  50. 46.
    C. D. Coryell, L. Pauling, and R. W. Dodson, J. Phys. Chem. 43: 825 (1939).CrossRefGoogle Scholar
  51. 47.
    C. D. Coryell, F. Stitt, and L. Pauling, J. Am. Chem. Soc. 59: 633 (1937).CrossRefGoogle Scholar
  52. 48.
    C. D. Coryell and F. Stitt, J. Am. Chem. Soc. 62: 2942 (1940).CrossRefGoogle Scholar
  53. 49.
    C. D. Russell and L. Pauling, Proc. Natl. Acad. Sci. U.S. 25: 517 (1939).CrossRefGoogle Scholar
  54. 50.
    C. D. Coryell and L. Pauling, J. Biol. Chem. 132: 769 (1940).Google Scholar
  55. 51.
    F. Stitt and C. D. Coryell, J. Am. Chem. Soc. 61: 1263 (1939).CrossRefGoogle Scholar
  56. 52.
    D. S. Taylor and C. D. Coryell, J. Am. Chem. Soc. 60: 1177 (1938).CrossRefGoogle Scholar
  57. 53.
    E. Hartree, Ann. Rept. Prog. Chem. 63: 295 (1948).Google Scholar
  58. 54.
    J. L. Hoard, in: Hemes and Hemoproteins ( B. Chance, R. W. Estabrook, and T. Yonetani,) pp. 9–24, Academic Press, New York (1966).Google Scholar
  59. 55.
    R. Havemann, W. Haberditzl, and K. H. Mader, Z. Phys. Chem. 218: 71–91 (1961).Google Scholar
  60. 56.
    R. Havemann and W. Haberditzl, Z. Phys. Chem. 217: 91–109 (1961).Google Scholar
  61. 57.
    P. Hambright, A. Thorpe, and C. Alexander, J. Inorg. Nucl. Chem. 30: 3139 (1968).CrossRefGoogle Scholar
  62. 58.
    G. Schoffa and W. Scheler, Naturwiss. 44: 464 (1957).CrossRefGoogle Scholar
  63. 59.
    L. Cambi and L. Szegö, Rend. Ist. Lombardo Sci. 67: 275 (1934).Google Scholar
  64. 60.
    G. Schoffa, Nature 203: 640 (1964).CrossRefGoogle Scholar
  65. 61.
    A. J. Bearden, T. H. Moss, W. H. Caughey, and C. A. Beaudreau, Proc. Natl. Acad. Sci. U.S. 53: 1246 (1965).CrossRefGoogle Scholar
  66. 62.
    A. B. P. Lever, J. Chem. Soc. 1821 (1965).Google Scholar
  67. 63.
    W. A. Rawlinson and P. B. Scutt, Australian J. Sci. Res. 5A: 173 (1952).Google Scholar
  68. 64.
    G. Harris, J. Chem. Phys. 48: 2191 (1968).CrossRefGoogle Scholar
  69. 65.
    W. A. Rawlinson, Australian J. Exptl. Biol. Med. Sci. 18: 185 (1940).CrossRefGoogle Scholar
  70. 66.
    G. Blauer and A. Ehrenberg, Biochim. Biophys. Acta 112: 496 (1966).CrossRefGoogle Scholar
  71. 67.
    L. M. Epstein, D. K. Straub, and C. Maricondi, Inorg. Chem. 6: 1720 (1967).CrossRefGoogle Scholar
  72. 68.
    G. Blauer and A. Ehrenberg, Acta Chem. Scand. 17: 8 (1963).CrossRefGoogle Scholar
  73. 69.
    J. H. Wang, A. Nakahara, E. B. Fleischer, J. Am. Chem. Soc. 80: 1109 (1958).CrossRefGoogle Scholar
  74. 70.
    P. A. Loach and M. Calvin, Biochem. 2: 361 (1963).CrossRefGoogle Scholar
  75. 71.
    W. E. Blumberg and J. Peisach, J. Biol. Chem. 240: 870 (1965).Google Scholar
  76. 72.
    M. Zener and M. Gouterman, Theor. Chem. Acta 4: 44 (1966).CrossRefGoogle Scholar
  77. 73.
    D. S. Taylor, J. Am. Chem. Soc. 61: 2150 (1939).CrossRefGoogle Scholar
  78. 74.
    R. Havemann, W. Haberditzl, and G. Rabe, Z. Phys. Chem. 218: 417 (1961).Google Scholar
  79. 75.
    J. S. Griffith, Biochim. Biophys. Acta 28: 439 (1958).CrossRefGoogle Scholar
  80. 76.
    T. G. Klumpp, J. Clin. Inv. 14: 351 (1935).CrossRefGoogle Scholar
  81. 77.
    M. Kotani, Prog. Theoret. Phys. (Kyoto) Suppl. 17: 4 (1961).CrossRefGoogle Scholar
  82. 78.
    G. Schoffa, in: The Structure and Properties of Biomolecules and Biological Systems (J. Duchesne, ed.) Chap. 4, Interscience Publishers, Inc., New York (1964).Google Scholar
  83. 79.
    J. S. Griffith, Biopolymers Symp. No. 1, p. 35 (1964).Google Scholar
  84. 80.
    M. Weissbluth, in: Structure and Bonding (C. K. Jorgensen, J. B. Neilands, R. S. Nyholm, D. Reinen, R. J. P. Williams,) Chap. 1, Springer-Verlag, New York (1967).Google Scholar
  85. 81.
    A. Tasaki, J. Otsuka, and M. Kotani, Biochim. Biophys. Acta 140: 284 (1967).Google Scholar
  86. 82.
    G. Schoffa, W. Scheller, O. Pistau, and F. Jung, Acta Biol. Med. Ger. 3: 65 (1959).Google Scholar
  87. 83.
    H. Morimoto, T. Iazuka, J. Otsuka, and M. Kotani, Biochim. Biophys. Acta 102: 624 (1965).CrossRefGoogle Scholar
  88. 84.
    H. Theorell and A. Ehrenberg, Acta Chem. Scand. 5: 823 (1951).CrossRefGoogle Scholar
  89. 85.
    J. H. Austin and D. L. Drabkin, J. Biol. Chem. 112: 67 (1935).Google Scholar
  90. 86.
    P. George, J. Beetlestone, and J. S. Griffith, Rev. Mod. Phys. 36: 441 (1964).CrossRefGoogle Scholar
  91. 87.
    J. S. Griffith, J. Inorg. Nucl. Chem. 2: 1, 229 (1956).CrossRefGoogle Scholar
  92. 88.
    C. Manwell, Ann. Rev. Physiol. 22: 191 (1960).CrossRefGoogle Scholar
  93. 89.
    E. Bayer and P. Schrezmann, in: Structure and Bonding ( C. K. Jorgensen, J. B. Neilands, R. S. Nyholm, D. Reinen, R. J. P. Williams,) p. 181, Springer-Verlag, New York (1967).CrossRefGoogle Scholar
  94. 90.
    H. Theorell and A. Ehrenberg, Arch. Biochem. Biophys. 41: 442 (1952).CrossRefGoogle Scholar
  95. 91.
    I. F. Gibson and D. J. Ingram, Nature 178: 871 (1956).CrossRefGoogle Scholar
  96. 92.
    I. F. Gibson, D. J. Ingram, and P. Nicholls, Nature 181: 1398 (1958).CrossRefGoogle Scholar
  97. 93.
    D. P. Craig and D. P. Mellor, J. Roy. Soc. New South Wales 78: 258 (1944).Google Scholar
  98. 94.
    R. Havemann and W. Haberditzl, Z. Phys. Chem. (Leipzig) 209: 135 (1958).Google Scholar
  99. 95.
    A. S. Brill and R. J. Williams, Biochem. J. 78: 246 (1961).Google Scholar
  100. 96.
    W. Scheler, J. Blanck, and W. Graf, Naturwiss. 50: 500 (1963).CrossRefGoogle Scholar
  101. 97.
    W. Scheler, G. Schoffa, and F. Jung, Biochem. Z. 329: 232 (1957).Google Scholar
  102. 98.
    W. Scheler, Biochem. Z. 330: 538 (1958).Google Scholar
  103. 99.
    A. Wishnia, J. Chem. Phys. 32: 871 (1960).CrossRefGoogle Scholar
  104. 100.
    K. Gersonde, A. Seidel, and H. Netter, J. Mol. Biol. 14: 37 (1965).CrossRefGoogle Scholar
  105. 101.
    R. Havemann and W. Haberditzl, Z. Phys. Chem. (Leipzig) 210: 267 (1959);Google Scholar
  106. R. Havemann and W. Haberditzl, Naturwiss. 44: 31 (1957).Google Scholar
  107. 102.
    W. Haberditzl, Abhandl. Deut. Akad. Wiss. Berlin KI. Med. 6: 137 (1964).Google Scholar
  108. 103.
    W. S. Caughey, W. Y. Fujimoto, A. J. Beardin, and T. H. Moss. Biochem. 5: 1255 (1966).CrossRefGoogle Scholar
  109. 104.
    W. Scheler, H. J. Thiele, and I. Scheler, Biochim. Biophys. Acta 66: 282 (1963).CrossRefGoogle Scholar
  110. 105.
    H. Theorell, J. Amer. Chem. Soc. 63: 1820 (1941).CrossRefGoogle Scholar
  111. 106.
    B. Boeri, A. Ehrenberg, K. G. Paul, and H. Theorell, Biochim. Biophys. Acta 12: 142, 273 (1953).CrossRefGoogle Scholar
  112. 107.
    R. Lumry, A. Solbakken, J. Sullivan, and L. H. Reyerson, J. Chem. Soc. 84: 142 (1961).Google Scholar
  113. 108.
    S. Paleus, A. Ehrenberg, and H. Tuppy, Acta Chem. Scand. 9: 365 (1955).CrossRefGoogle Scholar
  114. 109.
    A. Ehrenberg and M. D. Kamen, Biochim. Biophys. Acta 102: 333 (1965).CrossRefGoogle Scholar
  115. 110.
    A. Ehrenberg and T. Yonetani, Acta Chem. Scand. 15: 1071 (1961).CrossRefGoogle Scholar
  116. 111.
    A. S. Brill, R. B. Martin, and R. J. P. Williams, in Electronic Aspects of Biochemistry ( B. Pullman, ed.) p. 519, Academic Press, New York (1964).Google Scholar
  117. 112.
    E. Frieden, in Horizons in Biochemistry ( M. Kasha and B. Pullman,) p. 461, Academic Press, New York (1962).Google Scholar
  118. 113.
    T. Nakamura, Biochim. Biophys. Acta 30: 640 (1958).CrossRefGoogle Scholar
  119. 114.
    T. Nakamura, Biochim. Biophys. Acta 30: 538 (1958).CrossRefGoogle Scholar
  120. 115.
    L. Broman, B. G. Malmström, R. Aasa, and T. Vanngard, J. Mol. Biol. 5: 301 (1962).CrossRefGoogle Scholar
  121. 116.
    A. Ehrenberg, B. G. Malmström, L. Broman, and R. Mosbach, J. Mol. Biol. 5: 450 (1962).CrossRefGoogle Scholar
  122. 117.
    P. Aisen, S. H. Koenig, and H. R. Lilienthal, J. Mol. Biol. 28: 225 (1967).CrossRefGoogle Scholar
  123. 118.
    L. Michaelis and S. Granick, J. Gen. Physiol. 25: 325 (1941).CrossRefGoogle Scholar
  124. 119.
    H. Theorell and K. Agner, Arkiv. Kemi., Mineral Geol. 16A: (7) (1943).Google Scholar
  125. 120.
    H. F. Deutsch and A. Ehrenberg, Acta Chem. Scand. 6: 1522 (1952).CrossRefGoogle Scholar
  126. 121.
    H. Theorell, Arkiv_ Kemi, Mineral Geol. 16A (3) (1942).Google Scholar
  127. 122.
    A. Ehrenberg, in: The Structure and Properties of Biomolecules and Biological Systems (J. Duchesne, ed.) Chap. 16, Interscience Publishers, Inc., New York (1964).Google Scholar
  128. 123.
    A. Ehrenberg, in: Hemes and Hemoproteins ( B. Chance, R. W. Estabrook, and T. Yonetani,) p. 331, Academic Press, New York (1966).Google Scholar
  129. 124.
    D. C. Blomstrom, E. Knight, W. D. Phillips, and J. F. Weiher, Proc. Natl. Acad. Sci. U.S. 51: 1085 (1964).CrossRefGoogle Scholar
  130. 125.
    L. H. Jensen and L. C. Sieker, Science 150: 376 (1965).Google Scholar
  131. 126.
    H. M. Thornley, J. F. Gibson, F. R. Whatley, and D. O. Hall, Biochem. Biophys. Res. Comm. 24: 877 (1966).CrossRefGoogle Scholar
  132. 127.
    M. Kubo, Bull. Chem. Soc. Japan 26: 244 (1953).CrossRefGoogle Scholar
  133. 128.
    R. C. Bray, R. Pettersson, and A. Ehrenberg, Biochem. J. 81: 178 (1961).Google Scholar
  134. 129.
    R. C. Bray, B. G. Malström, and T. Vanngard, Biochem. J. 73: 193 (1959).Google Scholar
  135. 130.
    A. Ehrenberg and R. C. Bray, Arch. Biochem. Biophys. 109: 199 (1965).CrossRefGoogle Scholar
  136. 131.
    R. Aasa, B. Malstrom, P. Saltman, and J. Vanngard, Biochem. Biophys. Acta 88: 430 (1964).Google Scholar
  137. 132.
    H. Beinert, in: Hemes and Hemoproteins ( B. Chance, R. W. Estabrook, and T. Yonetani,) p. 23, Academic Press, New York (1966).Google Scholar
  138. 133.
    P. Weisel and P. Allen, see Ref. 60.Google Scholar
  139. 134.
    J. B. Neilands, J. Am. Chem. Soc. 74: 4846 (1962).Google Scholar
  140. 135.
    A. Ehrenberg, Nature 178: 379 (1956).CrossRefGoogle Scholar
  141. 136.
    H. H. Wickman, M. P. Klein, D. A. Shirley, Phys. Rev. 152: 345 (1966).CrossRefGoogle Scholar
  142. 137.
    S. Granick and L. Michaelis, Science 95: 439 (1942).CrossRefGoogle Scholar
  143. 138.
    L. Michaelis, C. D. Coryell, and S. Granick, J. Biol. Chem. 148: 463 (1943).Google Scholar
  144. 139.
    E. Bayer and K. H. Hauser, Experientia 11: 254 (1955).CrossRefGoogle Scholar
  145. 140.
    G. Schoffa, Z. Naturforsch. 206: 167 (1965).Google Scholar
  146. 141.
    J. L. Gilchrist, W. H. Orme-Johnson, and R. L. Collins, Bull. Am. Phys. Soc. 11 (11): 50 (1966).Google Scholar
  147. 142.
    R. C. Warner and I. Weber, J. Am. Chem. Soc. 75: 5094 (1953).CrossRefGoogle Scholar
  148. 143.
    A. Ehrenberg and C. B. Laurell, Acta Chem. Scand. 9: 68 (1955).CrossRefGoogle Scholar
  149. 144.
    L. I. Nekrasov, N. I. Kobozev, N. G. Pichugina, and N. A. Prodosheva, Vestnik Moskov. Univ. Ser. 11, Khim. 16, No. 2, p. 9 (1961).Google Scholar
  150. 145.
    D. L. Woernley, Arch. Biochem. Biophys. 54: 378 (1955).CrossRefGoogle Scholar
  151. 146.
    H. Diehl, R. W. V. Haar, and R. R. Sealock, J. Am. Chem. Soc. 72: 5512 (1950).CrossRefGoogle Scholar
  152. 147.
    E. Grün and R. Menasse, Experientia 6: 263 (1950).CrossRefGoogle Scholar
  153. 148.
    J. C. Wallmann, B. B. Cunningham, and M. Calvin, Science 118: 55 (1951).CrossRefGoogle Scholar
  154. 149.
    H. Diehl, R. W. Haar, and R. R. Sealock, J. of Sci. Iowa State Coll. 26: 19 (1951).Google Scholar
  155. 150.
    E. Kaczka, D. E. Wolf, and K. Folkers, J. Am. Chem. Soc. 71: 9514 (1949).CrossRefGoogle Scholar
  156. 151.
    J. V. Pierce, A. C. Page, E. L. Stokstad, and T. H. Jukes, J. Am. Chem. Soc. 71: 2952 (1949).CrossRefGoogle Scholar
  157. 152.
    O. Schmidt, Z. Phys. Chem. 39: 59 (1938);Google Scholar
  158. O. Schmidt, Z. Phys. Chem. 42: 83 (1939);Google Scholar
  159. O. Schmidt, Z. Phys. Chem. 44: 185 (1939);Google Scholar
  160. O. Schmidt, Z. Phys. Chem. 44: 194 (1939);Google Scholar
  161. O. Schmidt, Naturwiss. 29: 146 (1941).CrossRefGoogle Scholar
  162. 153.
    A. Pullman and B. Pullman, Experientia 2: 364 (1946).CrossRefGoogle Scholar
  163. 154.
    B. Dandel and A. Pullman, Compt. Rend. 222: 663 (1946).Google Scholar
  164. 155.
    A. Pullman, Ann. Chim. 2: 309 (1948).Google Scholar
  165. 156.
    G. M. Badger, Brit. J. Cancer 2: 309 (1948).Google Scholar
  166. C. A. Coulson, Adv. in Cancer Res. 1:1 (1953).Google Scholar
  167. 158.
    P. Rondoni, G. Mayr, and E. Gallico, Experientia 5: 357 (1959).CrossRefGoogle Scholar
  168. 159.
    D. L. Woernley, Arch. Biochem. Biophys. 50: 199 (1954).Google Scholar
  169. 160.
    G. Mayr and G. C. Rabotti, Experientia 13: 252 (1957).CrossRefGoogle Scholar
  170. 161.
    A. Veillard, B. Pullman, and G. Berthier, Compt. Rend. 252: 2321 (1961).Google Scholar
  171. 162.
    R. G. Shulman, W. M. Walsh, H. J. Williams, and J. P. Wright, Biochem. Biophys. Res. Comm. 5: 52 (1961).CrossRefGoogle Scholar
  172. 163.
    I. Isenberg, Biochem. Biophys. Res. Comm. 5: 139 (1961).CrossRefGoogle Scholar
  173. 164.
    J. M. Walsh, R. G. Shulman, and R. D. Heidenreich, Nature 192: 1041 (1961).CrossRefGoogle Scholar
  174. 165.
    G. C. Rabotti and G. Mayr, Giorn. liai. Chemioter 5: 75 (1958).Google Scholar
  175. 166.
    N. Perakis and F. Kern, Physik Komi. Mat. 3: 29 (1964).CrossRefGoogle Scholar
  176. 167.
    A. Blumenfeld, Acad. Roy. Soc. Belg. Classe Sci. 33: 93 (1961).Google Scholar
  177. 168.
    A. Ehrenberg and N. Ellfork, Acta Chem. Scand. 17: S343 (1963).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1969

Authors and Affiliations

  • F. E. Senftle
    • 1
  • W. P. Hambright
    • 2
  1. 1.U. S. Geological SurveyUSA
  2. 2.Department of ChemistryHoward UniversityUSA

Personalised recommendations