Advertisement

Span Loading and Formation of Wake

  • Peter F. Jordan

Abstract

Classical analyses of aircraft wake formation assume that the wing span loading is (essentially) elliptic, and that in consequence the wake starts out being (essentially) flat. This assumption is incorrect: actual span loadings contain a logarithmic term, and in consequence there is an infinite upwash directly behind the wing just inside the wing tips. This explains why the aircraft wake rolls up faster than the classical analyses predict.

Keywords

Vortex Sheet Wing Span Vertical Tangent Kutta Condition Lift Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Kaden, Aufwicklung einer unstabilen Unstetigkeitsfläche. Ing. Archiv 2 (1931) pp. 140–168.Google Scholar
  2. 2.
    F. L. Westwater, Rolling Up of the Surface of Discontinuity Behind an Aerofoil of Finite Span, British R&M 1692 (1935).Google Scholar
  3. 3.
    P. F. Jordan, The Parabolic Wing Tip in Subsonic Flow. To be presented at the AIAA 9th Aerospace Sci. Mtg. (New York, Jan. 1971 ).Google Scholar
  4. 4.
    W. Kinner, Die kreisförmige Tragfläche auf potentialtheoretischer Grundlage. Ing. Archiv 8 (1937) pp. 47–80.MATHCrossRefGoogle Scholar
  5. 5.
    W. Turowski, fier die kreisförmige Tragfläche mit vorgegebenem Abwind. Diplom paper, T. H. Karlsruhe (1957).Google Scholar
  6. 6.
    E. van Spiegel, Theory of the Circular Wing in Steady Incompressible Flow. NLL-TN F. 189 (1957).Google Scholar
  7. 7.
    E. van Spiegel, Boundary Value Problems in Lifting Surface Theory. NLL-TR W 1 (1959).Google Scholar
  8. 8.
    P. F. Jordan, Remarks on Applied Lifting Surface Theory. Jahrbuch 1967 der WGLR, pp. 192–210.Google Scholar
  9. 9.
    H. B. Helmbold, Der unverwundene Ellipsenflügel als tragende Fläche. Jahrbuch 1942 der Dtsch. Luftfahrtforschg. pp. I 111–113.Google Scholar
  10. 10.
    M. Landahl, Pressure-Loading Functions for Oscillating Wings with Control Surfaces. AIAA J. 6 (1968) pp. 345–348.MATHCrossRefGoogle Scholar
  11. 11.
    B. W. McCormick, J. L. Tangler & H. E. Sherrieb, Structure of Trailing Vortices. AIAA J. Aircraft 5 (1968) pp. 260–267.CrossRefGoogle Scholar
  12. 12.
    K. W. Mangler & J. H. B. Smith, Behavior of the Vortex Sheet at the Trailing Edge of a Lifting Wing. RAE TR 69049 (1969).Google Scholar
  13. 13.
    Th. E. Labrujere, W. Loeve & J. W. Slooff, An Approximate Method for the Calculation of the Pressure Distribution on Wing-Body Combinations at Subcritical Speeds. Paper 11 in “Aerodynamic Interference”, AGARD Conf. Proc. No. 71 (pre-print) (1970).Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Peter F. Jordan
    • 1
  1. 1.RIAS, Martin Marietta Corp.USA

Personalised recommendations