Core Polarization Effects in (p,p′) Reactions

  • H. McManus


Let me remark first of all that, regardless of the status of its theoretical description at any moment, core polarization is a well established experimental phenomenon, or rather is well established in the interpretation of experimental phenomena in terms of a microscopic model, i.e. the shell model, in an extended version or otherwise. A typical example is the interpretation of electromagnetic transitions, in terms of effective charge. The effective charge is the bare charge of a nucleon, +1 for a proton, 0 for a neutron, plus the polarization charge. Typically for an E2 transition, as the shell model basis becomes larger, and the calculation increases in complexity, the polarization charge needed to fit experiment decreases but usually more and more slowly, until when the limits of present computing are reached, it still remains at ~0.5e. Figure 1 shows such an example taken from calculations in the s-d shell.1


Shell Model Inelastic Scattering Transition Density Spin Orbit Central Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. R. de Kock and P. W. M. Glaudemans, Phys. Lett. 34B(1971) 280.ADSGoogle Scholar
  2. 2.
    M. Harvey, AECL-3366, June, 1969; M. Harvey and F. C. Khanna, Nucl. Phys. A152(1970)588; A155(1970)337;MathSciNetADSGoogle Scholar
  3. M. H. Macfarlane, “Enrico Fermi” Course 40, Varenna, Italy, p. 457 (Academic Press, 1969);Google Scholar
  4. M. Gmitro, A. Rimini, Theory of Nuclear Structure, Trieste Lectures 1969, 697, 713 Vienna, 1970.Google Scholar
  5. 3.
    G. F. Bertsch, Nucl. Phys. 74(1965)234;CrossRefGoogle Scholar
  6. T. T. S. Kuo and G. E. Brown, Nucl. Phys. 85(1966)40; A92(1967)181; A114(1968) 241;CrossRefGoogle Scholar
  7. T. T. S. Kuo, Nucl. Phys. A90(1967)199; A103(1967)71.ADSGoogle Scholar
  8. 4.
    H. Horie and A. Arima, Phys. Rev. 99(1955)778.ADSCrossRefGoogle Scholar
  9. 5.
    D. Slanina and H. McManus, Nucl. Phys. A116(1968)271.ADSGoogle Scholar
  10. 6.
    J. Atkinson and V. A. Madsen, UCRL-71809, Phys. Rev. C1(1970) 1377.ADSGoogle Scholar
  11. 7.
    W. G. Love and G. R. Satchler, Nucl. Phys. A101(1967)424.ADSGoogle Scholar
  12. 8.
    A. Scott, M. L. Whitten, G. R. Satchler, Bull. Am. Phys. Soc. 15(1970)498, Nucl. Phys. A to be published.Google Scholar
  13. 9.
    W. G. Love and G. R. Satchler, Nucl. Phys. A159(1970)l.Google Scholar
  14. 10.
    G. R. Satchler and W. G. Love, Nucl. Phys. A172(1971)449.ADSGoogle Scholar
  15. 11.
    F. Petrovich, Ph.D. Thesis, Michigan State University, 1970.Google Scholar
  16. 12.
    J. Heisenberg, J. S. McCarthy and I. Sick, Nucl. Phys. A164 (1971)353.ADSGoogle Scholar
  17. 13.
    G. R. Hammerstein, private communication.Google Scholar
  18. 14.
    T. Nomura, C. Gil, H. Saito, and T. Yamazaki, Phys. Rev. Lett. 25(1970)342.ADSCrossRefGoogle Scholar
  19. 15.
    B. M. Freedom, C. R. Gruhn, T. Kuo and C. Maggiore, Phys. Rev. C2(1970)166.ADSGoogle Scholar
  20. 16.
    C. Glasshausser, B. G. Harvey, D. L. Hendrie, J. Mahoney, E. A. McClatchie and J. Saudinos, Phys. Rev. Lett. 21(1968) 918.ADSCrossRefGoogle Scholar
  21. 17.
    W. Benenson, S. M. Austin, P. J. Locard, F. Petrovich, J. R. Borysowicz and H. McManus, Phys. Rev. Lett. 24(1970) 4CrossRefGoogle Scholar
  22. 18.
    B. R. Mottelson, J. Phys. Soc. Japan, Suppl. 24(1968)96.Google Scholar
  23. 19.
    W. G. Love, Phys. Lett. 35B (1971)371.ADSGoogle Scholar
  24. 20.
    V. A. Madsen, V. R. Brown, F. Becchetti, and G. W. Greenlees, Phys. Rev. Lett. 26 (1971)454.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • H. McManus
    • 1
  1. 1.Michigan State UniversityEast LansingUSA

Personalised recommendations