Advertisement

The Effective Two-Body Interaction in Finite Nuclei and its Calculation

  • Bruce R. Barrett

Abstract

The calculation of the effective interaction and of other effective operators in finite nuclei is an important link in the chain connecting microscopic phenomena, such as the nucleon-nucleon scattering phase shifts, with nuclear phenomena, such as cross sections and excitation energies. But, like all links in a chain, it depends upon the other links for its support. As we will see, the calculation of the effective interaction, which is part of the link having to do with the many-particle shell model (MPSM), is strongly dependent upon links having to do with the theory of the nucleon-nucleon interaction, the treatment of strong short-range correlations and the derivation of the single-particle shell model (SPSM).

Keywords

Model Space Effective Interaction Perturbation Expansion Energy Denominator Phenomenological Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Bloch and J. Horowitz, Nucl. Phys. 8, 91 (1958).MATHCrossRefGoogle Scholar
  2. 2.
    B. H. Brandow, Rev. Mod. Phys. 39, 771 (1967).ADSCrossRefGoogle Scholar
  3. 3.
    T. Morita, Progr. Theor. Phys. 29, 351 (1963).ADSMATHCrossRefGoogle Scholar
  4. 4.
    M. B. Johnson and M. Baranger, Ann. Phys. (N.Y.) 62, 172 (1971).ADSCrossRefGoogle Scholar
  5. 5.
    K. A. Brueckner, C. A. Levinson, and H. M. Mahmoud Phys. Rev. 95, 217 (1954).ADSMATHCrossRefGoogle Scholar
  6. H. A. Bethe and J. Goldstone, Proc. Roy. Soc. A238, 551 (1957).MathSciNetADSGoogle Scholar
  7. K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023 (1958) and references therein.MathSciNetADSCrossRefGoogle Scholar
  8. 6.
    G. Oberlechner, F. Owono-N’guema and J. Richert, Nuovo Cimento 68B, 23 (1970).MathSciNetADSGoogle Scholar
  9. TTt. S. Kuo, S. Y. Lee, and K. F. Ratcliff, preprint and to be published.Google Scholar
  10. 7.
    P. Federman and L. Zamick, Phys. Rev. 177, 1534 (1969).ADSCrossRefGoogle Scholar
  11. A. E. L. Dieperink and P. J. Brussaard, Nucl. Phys. A129, 33 (1969).ADSGoogle Scholar
  12. S. Siegel and L. Zamick, Nucl. Phys. A145, 89 (1970).ADSGoogle Scholar
  13. P. Goode and S. Siegel, Phys. Lett. 31B, 418 (1970).ADSGoogle Scholar
  14. P. J. Ellis and S. Siegel, Phys. Lett. 34B, 177 (1971).ADSGoogle Scholar
  15. A. E. L. Dieperink, Nucl. Phys. A160, 171 (1971).ADSGoogle Scholar
  16. 8.
    M. Harvey and F. C. Khanna, Nucl. Phys. A152. 588 (1970); Al55. 337 (1970).Google Scholar
  17. F. C. Khanna, H. C. Lee and M. Harvey, Nucl. Phys. A164. 612 (1971).Google Scholar
  18. 9.
    S. Kahana, H. C. Lee and C. K. Scott, Phys. Rev. 180, 956 (1969).ADSCrossRefGoogle Scholar
  19. H. C. Pradhan, private communication and M.I.T. thesis, 1971.Google Scholar
  20. 10.
    P. J. Ellis and H. A. Mavromatis, Oxford University preprint. 1971.Google Scholar
  21. 11.
    An excellent review article on G-matrix calculations is M. Baranger, in Proc. Int. School of Physics Enrico Fermi. Course 40. 1967, M. Jean, 137 (Academic Press, N. V., l9St)7p. 511.Google Scholar
  22. 12.
    B. R. Barrett, R. G. L. Hewitt, and R. J. McCarthy. Phys. Rev. C3, 1137 (1971).ADSGoogle Scholar
  23. 13.
    N. Loludice. D. J. Rowe, S. S. M. Wong, private communication.Google Scholar
  24. 14.
    F. Coester, in Lectures in Theoretical Physics. Vol. HB.Google Scholar
  25. K. T. Mahanthappa and W. E. Brittin, eds. (Gordon and Breach, N. Y., 1969), p. 157.Google Scholar
  26. 15.
    B. R. Barrett and M. W. Kirson, Nucl. Phys. A148. 145 (1970).Google Scholar
  27. 16.
    T. H. Schucan and H. A. Weidenmüller, preprint and to be published in Ann. Phys.Google Scholar
  28. 17.
    J. F. Dawson, I. Talmi and J. D. Walecka. Ann Phys. (N.Y.) 18. 339 (1962).ADSCrossRefGoogle Scholar
  29. 18.
    TTT. S. Kuo and G. E. Brown. Nucl. Phys. 85, 40 (1966).CrossRefGoogle Scholar
  30. 19.
    B. H. Wildenthal. E. C. Halbert. J. B. McGrory and T. T. S. Kuo, Phys. Lett. 32B, 339 (1970).ADSGoogle Scholar
  31. 20.
    G. F. Bertsch. NucTPhys. 74. 234 (1965).CrossRefGoogle Scholar
  32. 21.
    T. T. S. Kuo. Nucl. Phys. A103, 71 (1967).ADSGoogle Scholar
  33. 22.
    M. W. Kirson, Phys. Lett. 32B 33 (1970).ADSGoogle Scholar
  34. 23.
    L. Zamick. Phys. Rev. Lett 23. 1406 (1969).ADSCrossRefGoogle Scholar
  35. E. Osnes and C. S. Warke. Phys. Lett. 30B, 306 (1969).ADSGoogle Scholar
  36. 24.
    P. Goode. preprint and to be published.Google Scholar
  37. 25.
    B. H. Brandow, in Lectures in Theoretical Physics, Vol. 11B. K. T. Mahanthappa and W. E. Brittin. eds. (Gordon and Breach, N. Y.. 1969). p. 55.Google Scholar
  38. 26.
    B. R. Barrett and M. W. Kirson. Phys. Lett. 30B. 8 (1969).ADSGoogle Scholar
  39. 27.
    M. W. Kirson and L. Zamick. Ann. Phys. (N.Y.) 60, 188 (1970).ADSCrossRefGoogle Scholar
  40. 28.
    M. W. Kirson. Ann. Phys. (N.Y.) to be published (de Shalit memorial volume).Google Scholar
  41. 29.
    E. Osnes. T. T. S. Kuo and C. S. Warke, Nucl. Phys. Al68. 190 (1971).Google Scholar
  42. 30.
    F. Palumbo, Phys. Rev. C4. 327 (1971).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Bruce R. Barrett
    • 1
  1. 1.Department of PhysicsUniversity of ArizonaTucsonUSA

Personalised recommendations