Advertisement

An Effective Reaction Matrix Derived from Nuclear Matter Calculations

  • H. A. Bethe

Abstract

I’m going to talk about the nuclear interaction as derived from nuclear matter theory. I have written here some of the concepts which I shall use
$${\rm {G = v - v}\frac{{Q}} {{e}}{G}}$$
(1)
$$ {\rm{G}\phi { = v}\psi} $$
(2)
. The first equation determines the so-called reaction matrix, G, which was introduced by Brueckner1 and which is supposed to be given. Q is the Pauli operator and e is the energy difference between the excited and normal states. The sum of the diagonal elements of the G-matrix gives the potential energy of a given piece of nuclear matter or of a finite nucleus.

Keywords

Nuclear Matter Tensor Force Defect Function Total Binding Energy Repulsive Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. A. Brueckner, Phys. Rev. 97, 1353(1955);ADSMATHCrossRefGoogle Scholar
  2. K. A. Brueckner, C. A. Levinson, and H. M. Mahmoud, Phys. Rev. 95, 217(1954);ADSMATHCrossRefGoogle Scholar
  3. K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344(1955).ADSMATHCrossRefGoogle Scholar
  4. 2.
    R. V. Reid, Ann. of Phys. 50, 411(1968).ADSCrossRefGoogle Scholar
  5. 3.
    G. E. Brown, A. D. Jackson, and T. T. S. Kuo, Nucl. Phys. A133, 481(1969).ADSGoogle Scholar
  6. 4.
    G. E. Brown and A. M. Green, Nuclear Phys. A137, 1(1969).ADSGoogle Scholar
  7. 5.
    B. H. J. McKellar and R. Rajaraman, Phys. Rev. C3, 1877(1971).ADSGoogle Scholar
  8. 6.
    B. D. Day, Phys. Rev. 187, 1269(1969).ADSCrossRefGoogle Scholar
  9. 7.
    Wong and Sawada, UCLA preprint.Google Scholar
  10. 8.
    P. J. Siemens, Nucl. Phys. A141, 225(1970).ADSGoogle Scholar
  11. 9.
    J. W. Negele, Phys. Rev. C1, 1260(1970).ADSGoogle Scholar
  12. 10.
    J. B. Bellicard, P. Bounin, R. F. Frosch, R. Hofstadter, J. S. McCarthy, F. J. Uhrhane, M. R. Yearian, B. C. Clark, R. Herman, and D. G. Ravenhall, Phys. Rev. Letters 19, 527(1967);ADSCrossRefGoogle Scholar
  13. R. F. Frosch, R. Hofstadter, J. S. McCarthy, G. K. Noldeke, K. J. van Oostrum, and M. R. Yearian, Phys. Rev. 174, 1380(1968).ADSCrossRefGoogle Scholar
  14. 11.
    J. W. Negele, Phys. Rev. Letters 27, 1291(1971)ADSCrossRefGoogle Scholar
  15. 12.
    K. A. Brueckner and D. T. Goldman, Phys. Rev. 117, 207(1960).MathSciNetADSCrossRefGoogle Scholar
  16. 13.
    D. W. L. Sprung, private communication.Google Scholar
  17. 14.
    K. T. R. Davies, M. Baranger, R. M. Tarbutton, and T. T. S. Kuo, Phys. Rev. 177, 1519(1969).ADSCrossRefGoogle Scholar
  18. 15.
    R. J. McCarthy and K. T. R. Davies, Phys. Rev. C1, 1640(1970).ADSGoogle Scholar
  19. 16.
    R. L. Becker, A. D. MacKellar, and B. M. Morris, Phys. Rev. 174, 1264(1968).ADSCrossRefGoogle Scholar
  20. 17.
    K. T. R. Davies and R. J. McCarthy, Phys. Rev. C4, 81(1971).ADSGoogle Scholar
  21. 18.
    B. H. Brandow, Rev. Mod. Phys. 39, 771(1967).ADSCrossRefGoogle Scholar
  22. 19.
    R. L. Becker, Phys. Rev. Lett. 24, 400(1970).ADSCrossRefGoogle Scholar
  23. 20.
    T. H. R. Skyrme, Phil. Mag. 1, 1043(1956); Nuclear Phys. 9, 615 (1959).ADSMATHCrossRefGoogle Scholar
  24. 21.
    D. Vautherin and D. M. Brink, Phys. Letters 32B, 149(1970).ADSGoogle Scholar
  25. 22.
    Wong and Sawada, UCLA preprint.Google Scholar
  26. 23.
    T. Hamada and I. D. Johnston, Nucl. Phys. 34, 382(1962).CrossRefGoogle Scholar
  27. 24.
    T. Ueda and A. E. S. Green, Phys. Rev. 174, 1304(1968).ADSCrossRefGoogle Scholar
  28. 25.
    R. Bryan and B. L. Scott, Phys. Rev. 177, 1435(1969).ADSCrossRefGoogle Scholar
  29. 26.
    C. N. Bressel, A. K. Kerman and B. Rouben, Nucl. Phys. A124, 624(1969).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • H. A. Bethe
    • 1
  1. 1.Cornell UniversityIthacaUSA

Personalised recommendations