Off-Energy-Shell Effects in Many-Nucleon Systems

  • Frank Tabakin


A multitude of potentials can reproduce the same two-nucleon elastic scattering data. For many of these potentials the two- body wave functions can be radically different and can alter dramatically the predictions of many-body nuclear calculations. The basic problem therefore is to find both theoretical and experimental restrictions on the possible forms of the two-nucleon wave function.


Wave Function Nuclear Matter Unitary Transformation Occupation Probability Deuteron Wave Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Baranger, B. Giraud, S. K. Mukhopeidyay, and P. U. Sauer, Nucl. Phys. A138 (1969) 1.ADSGoogle Scholar
  2. 2.
    M. I. Haftel, Phys. Rev. Letters 25 (1970) 120.MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    P. U. Sauer, Nucl. Phys. A170 (1971) 497.MathSciNetADSGoogle Scholar
  4. 4.
    U. K. L. Kowalski, J. E. Monahan, C. M. Shakin, and R. M. Thcder, Phys. Rev. C3 (1971) 43;Google Scholar
  5. J. E. Monahan, C. M. Shakin, and R. M. Thaler, Phys. Rev. C4 (1971) 289.Google Scholar
  6. 5.
    R. D. Amado, Phys. Rev. C2 (1970) 2439.ADSGoogle Scholar
  7. 6.
    W. Van Dijk and M. Razavy, Nucl. Phys. A159 (1970) 161.ADSGoogle Scholar
  8. 7.
    H. S. Picker, E. F. Redish, and G. J. Stephenson Jr., Phys. Rev. C4 (1971) 289.ADSGoogle Scholar
  9. 8.
    D.W.L. Sprung, Hercog Novi Svunmer School Lectures (1970) and references therein.Google Scholar
  10. 9.
    C. W. Wong and T. Sawada (1971-preprint).Google Scholar
  11. 10.
    J. S. Bell in “The Many-Body Problem” First Bergen International School of Physics - 1961 (W. A. Benjamin Inc., New York)Google Scholar
  12. 11.
    C. A. Baker, Phys. Rev. 128 (1962) 1485.MathSciNetADSMATHCrossRefGoogle Scholar
  13. 12.
    H. Ekstein, Phys. Rev. 117 (l960) 1590.MathSciNetCrossRefGoogle Scholar
  14. 13.
    F. Coester, S. Cohen, B. Day and C. M. Vincent, Phys. Rev. C1 (1970) 769.ADSGoogle Scholar
  15. 14.
    M. Miller, M. Sher, P. Signell, N. Yoder, and D. Marker, Phys. Letters 30B (1969) 157.ADSGoogle Scholar
  16. 15.
    E. Lomon, Bull. Am. Phys. Soc. 14 (1969) 1493.Google Scholar
  17. 16.
    M. Ristig and S. Kistler, Z. Physik 215 (1968) 1419.CrossRefGoogle Scholar
  18. 17.
    M. I. Haftel and F. Tabakin, Nucl. Phys. A158 (1970) 1 and Phys. Rev. C3 (1971) 921.ADSGoogle Scholar
  19. 18.
    P. U. Sauer, Nucl. Phys. A150 (1970) 1467.Google Scholar
  20. 19.
    K.T.R. Davies and R. J. McCarthy, Phys. Rev. C4 (1971) 81. (Additional references on the occupation probability formalism are given in this paper.)Google Scholar
  21. 20.
    D. M. Clement, F.J.D. Serduke, and I. R. Afnan, Nucl. Phys. A139 (1969) 407.ADSGoogle Scholar
  22. 21.
    T. Brady, M. Fuda, E. Harms, J. S. Levinger, and R. Stagat, Phys. Rev. 186 (1969) 1069.Google Scholar
  23. 22.
    P. U. Sauer, M. I. Haftel, and E. Lambert (to be published).Google Scholar
  24. 23.
    C. W. Wong, Nucl. Phys. 56 (1964) 213 and Nucl. Phys. 71 (1965) 385.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Frank Tabakin
    • 1
  1. 1.Physics DepartmentUniversity of PittsburghUSA

Personalised recommendations