The Water Molecule

  • C. W. Kern
  • M. Karplus
Part of the Water book series (WCT, volume 1)


The behavior of water in any of its phases depends ultimately on the structure and properties of the isolated water molecule. Since quantum mechanics provides an accurate description of molecular phenomena, a detailed understanding of the water molecule is available from theory. This implies that it is possible, in principle, to predict the structure and properties of water, or of any other molecule, from a knowledge of the number of particles and the values of their masses, charges, and spins. Because of significant limitations on the extent to which such a theoretical analysis can be carried out in practice, a judicious combination of theory and carefully designed experiments provides the most powerful tool for the investigation of chemically interesting species.


Wave Function Configuration Interaction Polyatomic Molecule Nuclear Motion Kinetic Energy Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. L. C. Allen, Ann. Rev. Phys. Chem. 20, 315 (1969)CrossRefGoogle Scholar
  2. R. G. Clark and E. T. Stewart, Quart. Rev. 24, 95 (1970)CrossRefGoogle Scholar
  3. W. G. Richards, T. E. H. Walker, and R. K. Hinkley, “Bibliography of Ab Initio Molecular Wave Functions,” Clarendon Press, Oxford (1970)Google Scholar


  1. F. Hund, Die Gestalt Mehratomiger Polarer Molekeln. I., Zs. Physik 31, 81 (1925)CrossRefGoogle Scholar
  2. F. Hund, II. Molekeln, die aus einem Negativen Ion und aus Wasserstoffkernen Bestehen, Z. Physik 32, 1 (1925).CrossRefGoogle Scholar
  3. L. Pauling, The Nature of the Chemical Bond. Applications of Results Obtained from the Quantum Mechanics and from a Theory of Paramagnetic Susceptibility to the Structure of Molecules, J. Am. Chem. Soc. 53, 1367 (1931).CrossRefGoogle Scholar
  4. J. C. Slater, Molecular Energy Levels and Valence Bonds, Phys. Rev. 38, 1109 (1931).CrossRefGoogle Scholar
  5. A. S. Coolidge, A Quantum Mechanics Treatment of the Water Molecule, Phys. Rev. 42, 189 (1932).CrossRefGoogle Scholar
  6. R. S. Mulliken, Electronic Structures of Polyatomic Molecules and Valence, Phys. Rev. 40, 55 (1932).CrossRefGoogle Scholar
  7. R. S. Mulliken, Electronic Structures of Polyatomic Molecules and Valence. V. Molecules RXn, J. Chem. Phys. 1, 492 (1933).CrossRefGoogle Scholar
  8. J. H. Van Vleck and P. C. Cross, A Calculation of the Vibration Frequencies and Other Constants of the H2O Molecule, J. Chem. Phys. 1, 357 (1933).CrossRefGoogle Scholar


  1. R. S. Mulliken, Electronic Structures of Polyatomic Molecules. VII. Ammonia and Water-Type Molecules and Their Derivatives, J. Chem. Phys. 3, 506 (1935)CrossRefGoogle Scholar
  2. R. S. Mulliken, XI. Electroaffinity, Molecular Orbitals, and Dipole Moments, Chem. Phys. 3, 573 (1935)Google Scholar
  3. R. S. Mulliken, XII. Electroaffinity and Molecular Orbitals, Polyatomic Applications, J. Chem. Phys. 3, 586 (1935).CrossRefGoogle Scholar


  1. C. A. Coulson, Quantum Theory of the Chemical Bond, Proc. Roy. Soc. (Edinburgh) A61, 115 (1941).Google Scholar
  2. D. F. Heath and J. W. Linnett, Molecular Force Fields. I. The Structure of the Water Molecule, Trans. Faraday Soc. 44, 556 (1948).CrossRefGoogle Scholar
  3. C. A. Coulson, Liaisons Localisées et Non-Localisées, J. Chim. Phys. 46, 198 (1949).Google Scholar


  1. J. A. Pople, The Molecular Orbital Theory of Chemical Valency. V. The Structure of Water and Similar Molecules, Proc. Roy. Soc. (London) A202, 323 (1950).Google Scholar


  1. C. A. Coulson, Critical Survey of the Method of Ionic-Homopolar Resonance, Proc. Roy. Soc. (London) A207, 63 (1951).Google Scholar


  1. J. W. Linnett and A. J. Poe, Directed Valency in Elements of the First Short Period, Trans. Faraday Soc. 49, 217 (1953).CrossRefGoogle Scholar
  2. A. B. F. Duncan and J. A. Pople, The Structure of Some Simple Molecules with Lone-Pair Electrons, Trans. Faraday Soc. 49, 217 (1953).CrossRefGoogle Scholar
  3. F. O. Ellison and H. Shull, An LCAO MO Self-Consistent Field Calculation of the Ground State of H2O, J. Chem. Phys. 21, 1420 (1953).CrossRefGoogle Scholar
  4. J. A. Pople, The Electronic Structure and Polarity of the Water Molecule, Chem. Phys. 21, 2234 (1953).Google Scholar
  5. A. D. Walsh, The Electronic Orbitals, Shapes, and Spectra of Polyatomic Molecules. Part I. AH2 Molecules, J. Chem. Soc. 2260 (1953).Google Scholar


  1. F. O. Ellison and H. Shull, Molecular Calculations. I. LCAO MO Self-Consistent Field Treatment of the Ground State of H2O, J. Chem. Phys. 23, 2348 (1955).CrossRefGoogle Scholar
  2. F. O. Ellison, Molecular Calculations. II. Methods of Approximation of Molecular Integrals, J. Chem. Phys. 23, 2358 (1955).CrossRefGoogle Scholar
  3. R. S. Mulliken, Bond Angles in Water-Type and Ammonia-Type Molecules and Their Derivatives, J. Am. Chem. Soc. 77, 887 (1955).CrossRefGoogle Scholar
  4. R. S. Mulliken, Electronic Population Analysis on LCAO MO Molecular Wave Functions, J. Chem. Phys. 23, 1833 (1955).CrossRefGoogle Scholar


  1. K. E. Banyard and N. H. March, X-Ray Scattering by “Neon-like” Molecules, Acta Cryst. 9, 385 (1956).CrossRefGoogle Scholar
  2. S. F. Boys, G. B. Cook, C. M. Reeves, and I. Shavitt, Automatic Fundamental Calculations of Molecular Structure, Nature 178, 1207 (1956).CrossRefGoogle Scholar
  3. S. Smith and J. W. Linnett, Molecular Force Fields. XVI. Force Constants in Some Non-linear Triatomic Molecules, Trans. Faraday Soc. 52, 891 (1956).CrossRefGoogle Scholar


  1. K. E. Banyard and N. H. March, Distribution of Electrons in the Water Molecule, J. Chem. Phys. 26, 1416 (1957).CrossRefGoogle Scholar
  2. K. E. Banyard and N. H. March, Central-Field Approach for NH3 and H2O, Chem. Phys. 27, 977 (1957).Google Scholar
  3. K. Funabashi and J. L. Magee, Central-Field Approximation for the Electronic Wave Functions of Simple Molecules, Chem. Phys. 26, 407 (1957).Google Scholar
  4. J. A. Pople, The Theory of Chemical Shifts in Nuclear Magnetic Resonance. II. Interpretation of Proton Shifts, Proc. Roy. Soc. (London) A239, 550 (1957).Google Scholar
  5. T. P. Das and T. Ghose, Magnetic Properties of Water Molecule, J. Chem. Phys. 31, 42 (1959).CrossRefGoogle Scholar
  6. R. Gaspar and I. Tamassy-Lentei, United Atom Model for the Hydride Molecules. HO, HO-, and H2O, Acta Phys. Hung. 10, 149 (1959).Google Scholar
  7. K. E. Banyard, Diamagnetism as a Test of Wave Functions for Some Simple Molecules, J. Chem. Phys. 33, 832 (1960).CrossRefGoogle Scholar
  8. R. Bersohn, Field Gradients at the Deuteron in Molecules, J. Chem. Phys. 32, 85 (1960).CrossRefGoogle Scholar
  9. R. McWeeny and K. A. Ohno, A Quantum-Mechanical Study of the Water Molecule, Proc. Roy. Soc. (London) A255, 367 (1960).Google Scholar


  1. R. Gaspar, I. Tamassy-Lentei, and Y. Kruglyak, United-Atom Model for Molecules of the Type XHW, J. Chem. Phys. 36, 740 (1962).CrossRefGoogle Scholar
  2. D. P. Merrifield, A Configuration Interaction Study of the Electronic States of the Water Molecule, MIT-SSMTG Quart. Progr. Rept. No. 43, p. 27 (1962).Google Scholar
  3. R. Moccia, One-Center Expansion Self-Consistent Field Molecular Orbital Electronic Wave Functions for XHn Molecules, J. Chem. Phys. 37, 910 (1962).CrossRefGoogle Scholar
  4. M. Allavena and S. Bratöz, Calcul Electronique des Constantes de Force et du Spectre Infrarouge des Molecules H2O et D2O, J. Chim. Phys. 60, 1199 (1963).Google Scholar
  5. R. F. W. Bader and G. A. Jones, The Electron Density Distributions in Hydride Molecules. I. The Water Molecule, Can. J. Chem. 41, 586 (1963).CrossRefGoogle Scholar
  6. D. M. Bishop, J. R. Hoyland, and R. G. Parr, Simple One-Center Calculation of Breathing Force Constants and Equilibrium Internuclear Distances for NH3, H2O, and HF, Mol. Phys. 6, 467 (1963).CrossRefGoogle Scholar
  7. M. Krauss, Calculation of the Geometrical Structure of Some AHn Molecules, J. Res. Natl. Bur. Std. 68A, 635 (1964).Google Scholar
  8. S. R. La Paglia, Theory of Rydberg Series in Polyatomic Molecules: H2O, J. Chem. Phys. 41, 1427 (1964).CrossRefGoogle Scholar
  9. R. Moccia, One-Center Basis Set SCF MO’s. III. H2O, H2S, and CH4, J. Chem. Phys. 40, 2186 (1964).CrossRefGoogle Scholar
  10. J. A. Pople and D. P. Santry, Molecular Orbital Theory of Nuclear Spin Coupling Constants, Mol. Phys. 8, 1 (1964).CrossRefGoogle Scholar
  11. J. L. J. Rosenfeld, Analysis of Calculations on Some Oxygen Hydrides, J. Chem. Phys. 40, 384 (1964).CrossRefGoogle Scholar
  12. L. Zulicke, Über eine quantenmechanische Berechnung des Wassermoleküls, Z. Naturforsch. 19a, 1016 (1964).Google Scholar
  13. D. M. Bishop, Use of Fock-Petrashen and Hydrogenic Orbitals in Single-Center Wave Functions, J. Chem. Phys. 43, 3052 (1965).CrossRefGoogle Scholar
  14. L. C. Cusachs, Semi-Empirical Molecular Orbitals for General Polyatomic Molecules. II. One-Electron Model Prediction of the H-O-H Angle, J. Chem. Phys. 43, S157 (1965).CrossRefGoogle Scholar
  15. R. M. Glaeser and C. A. Coulson, Multipole Moments of the Water Molecule, Trans. Faraday Soc. 61, 389 (1965).CrossRefGoogle Scholar
  16. M. Klessinger, Self-Consistent Group Calculations on Polyatomic Molecules. II. Hybridization and Optimum Orbitals in Water, J. Chem. Phys. 43, SI 17 (1965).CrossRefGoogle Scholar
  17. B. Kockel, D. Hamel, and K. Ruckeishausen, Eine Berechnung des Wassermoleküls, Z. Naturforsch. 20a, 26 (1965).Google Scholar
  18. J. W. Moskowitz and M. C. Harrison, Gaussian Wave Functions for the 10-Electron Systems. III. OH-, H2O, H2O+, J. Chem. Phys. 43, 3550 (1965)CrossRefGoogle Scholar
  19. Erratum: Ibid. 46, 2019 (1967).Google Scholar
  20. J. A. Pople and G. A. Segal, Approximate Self-Consistent Molecular Orbital Theory. II. Calculations with Complete Neglect of Differential Overlap, J. Chem. Phys. 43, SI36 (1965).Google Scholar


  1. D. M. Bishop and M. Randic, Ab Initio Calculation of Harmonic Force Constants, J. Chem. Phys. 44, 2480 (1966).CrossRefGoogle Scholar
  2. D. M. Bishop and M. Randic, A Theoretical Investigation of the Water Molecule, Mol. Phys. 10, 517 (1966).CrossRefGoogle Scholar
  3. D. G. Carroll, A. T. Armstrong, and S. P. McGlynn, Semi-Empirical Molecular Orbital Calculations. I. The Electronic Structure of H2O and H2S, J. Chem. Phys. 44, 1865 (1966).CrossRefGoogle Scholar
  4. D. E. Ellis and A. Sambles, Tabulated and used by C. Edmiston and K. Ruedenberg, “Quantum Theory of Atoms, Molecules, and the Solid State,” Academic Press, New York (1966), p. 263.Google Scholar
  5. J. A. Pople and G. A. Segal, Approximate Self-Consistent Molecular Orbital Theory. III. CNDO Results for AB2 and AB3 Systems, J. Chem. Phys. 44, 3289 (1966).CrossRefGoogle Scholar


  1. G. P. Arrighini, M. Maestro, and R. Moccia, Electric Polarizability of Polyatomic Molecules, Chem. Phys. Letters 1, 242 (1967).CrossRefGoogle Scholar
  2. R. N. Dixon, Approximate Self-Consistent Field Molecular Orbital Calculations for Valence Shell Electronic States, Mol. Phys. 12, 83 (1967).CrossRefGoogle Scholar
  3. A. A. Frost, B. H. Prentice III, and R. A. Rouse, A Simple Floating Localized Orbital Model of Molecular Structure, J. Am. Chem. Soc. 89, 3064 (1967).CrossRefGoogle Scholar
  4. D. Hager, E. Hess, and L. Zulicke, Berechnungen des Wassermolekiils mit Hartree-Fock-Atomorbitalen, Z. Naturforsch. 22a, 1282 (1967).Google Scholar
  5. D. Hamel, Eine Berechnung des H2O Molekiils, Z. Naturforsch. 22a, 176 (1967).Google Scholar
  6. J. F. Harrison, Some One-Electron Properties of H2O and NH3, J. Chem. Phys. 47, 2990 (1967).CrossRefGoogle Scholar
  7. R. Moccia, Perturbed SCF MO Calculations. Electrical Polarizability and Magnetic Susceptibility of HF, H2O, NH3, and CH4, Theor. Chim. Acta 8, 192 (1967).CrossRefGoogle Scholar
  8. J. A. Pople, D. L. Beveridge, and P. A. Dobosh, Approximate Self-Consistent Molecular-Orbital Theory. V. Intermediate Neglect of Differential Overlap, J. Chem. Phys. 47, 2026 (1967).CrossRefGoogle Scholar
  9. P. Pyykkö, Electric Field Gradient Calculations with One-Center Expansion Wave Functions, Proc. Phys. Soc. 92, 841 (1967).CrossRefGoogle Scholar
  10. C. D. Ritchie and H. F. King, Gaussian Basis SCF Calculations for OH-, H2O, NH3, and CH4, J. Chem. Phys. 47, 564 (1967).CrossRefGoogle Scholar
  11. L. C. Snyder, Heats of Reaction from Hartree-Fock Energies of Closed-Shell Molecules, Chem. Phys. 46, 3602 (1967).Google Scholar
  12. J. G. Stamper and N. Trinajstic, Localized Orbitals for Some Simple Molecules, J. Chem. Soc. 782 (1967).Google Scholar
  13. G. P. Arrighini, M. Maestro, and R. Moccia, Magnetic Properties of Polyatomic Molecules. I. Magnetic Susceptibility of H2O, NH3, CH4, H2O2, J. Chem. Phys. 49, 882 (1968).CrossRefGoogle Scholar
  14. P. Arrighini, M. Maestro, and R. Moccia, Calculation of Dipole Hyperpolarizabilities of H2O, NH3, CH4 and CH3F, Symp. Faraday Soc. 2, 48 (1968).CrossRefGoogle Scholar
  15. S. Aung, R. M. Pitzer, and S. I. Chan, Approximate Hartree-Fock Wave Functions, One-Electron Properties, and Electronic Structure of the Water Molecule, J. Chem. Phys. 49, 2071 (1968).CrossRefGoogle Scholar
  16. M. J. Cooper, M. Roux, M. Cornille, and B. Tsapline, The Compton Profile of Water, Phil. Mag. 18, 309 (1968).Google Scholar
  17. A. A. Frost, A Floating Spherical Gaussian Orbital Model of Molecular Structure. III. First-Row Atom Hydrides, J. Phys. Chem. 72, 1289 (1968).CrossRefGoogle Scholar
  18. C. Guidotti and O. Salvetti, Double Orbital Exponent SCF Functions for H2O, NH3, CH4, Theor. Chim. Acta 10, 454 (1968).CrossRefGoogle Scholar
  19. Y. Harada and J. N. Murrell, The Correlation Between Molecular and Atomic Rydberg Levels. Part I. An Analysis of the Rydberg States of Water, Mol. Phys. 14, 153 (1968).CrossRefGoogle Scholar
  20. J. F. Harrison, Electric-Dipole Polarizability of H2O and NH3, J. Chem. Phys. 49, 3321 (1968).CrossRefGoogle Scholar
  21. W. J. Hehre and J. A. Pople, Atomic Electron Populations for Some Simple Molecules, Chem. Phys. Letters 2, 379 (1968).CrossRefGoogle Scholar
  22. A. C. Hopkinson, N. K. Holbrook, K. Yates, and I. G. Csizmadia, Theoretical Study on the Proton Affinity of Small Molecules Using Gaussian Basis Sets in the LCAO-MO-SCF Framework, J. Chem. Phys. 49, 3596 (1968).CrossRefGoogle Scholar
  23. W. Kern and R. L. Matcha, Nuclear Corrections to Electronic Expectation Values: Zero-Point Vibrational Effects in the Water Molecule, J. Chem. Phys. 49, 2081 (1968).CrossRefGoogle Scholar
  24. H. Kim and R. G. Parr, One-Center Perturbation Approach to Molecular Electronic Energies. IV. 10-Electron Molecules of Type MHfc, J. Chem. Phys. 49, 3071 (1968).CrossRefGoogle Scholar
  25. J. H. Letcher and T. H. Dunning Jr., Localized Orbitals. I. a Bonds, J. Chem. Phys. 48, 4538 (1968).CrossRefGoogle Scholar
  26. T. F. Lin and A. B. F. Duncan, Calculations on Rydberg Terms of the Water Molecule, J. Chem. Phys. 48, 866 (1968).CrossRefGoogle Scholar
  27. D. Neumann and J. W. Moskowitz, One-Electron Properties of Near-Hartree-Fock Wave Functions. I. Water, J. Chem. Phys. 49, 2056 (1968).CrossRefGoogle Scholar
  28. J. A. Pople, J. W. Mclver Jr., and N. S. Ostlund, Self-Consistent Perturbation Theory. II. Nuclear-Spin Coupling Constants, J. Chem. Phys. 49, 2965 (1968).CrossRefGoogle Scholar


  1. J. Andriessen, A Calculation of the Ground State of H2O Using a Minimal Basis Set, Chem. Phys. Letters 3, 257 (1969).CrossRefGoogle Scholar
  2. D. B. Cook and P. Palmieri, Approximate Ab Initio Calculations on Polyatomic Molecules. II., Mol. Phys. 17, 271 (1969).CrossRefGoogle Scholar
  3. P. F. Franchini and C. Vergani, GF Calculation with Minimal and Extended Basis Sets for H2O, NH3, CH4, and H2O2, Theor. Chim. Acta 13, 46 (1969).CrossRefGoogle Scholar
  4. I. H. Hillier and V. R. Saunders, Ab Initio Calculations of d-Orbital Participation in Some Sulfur Compounds, Chem. Phys. Letters 4, 163 (1969).CrossRefGoogle Scholar
  5. J. A. Horsley and W. H. Fink, Ab Initio Calculation of Some Lower-Lying Excited States of H2O, Chem. Phys. 50, 750 (1969).Google Scholar
  6. W. J. Hunt and W. A. Goddard III, Excited States of H2O Using Improved Virtual Orbitals, Chem. Phys. Letters 3, 414 (1969).CrossRefGoogle Scholar
  7. W. J. Hunt, T. H. Dunning Jr., and W. A. Goddard III, The Orthogonality Constrained Basis Set Expansion Method for Treating Off-Diagonal Lagrange Multipliers in Calculations of Electronic Wave Functions, Chem. Phys. Letters 3, 606 (1969).CrossRefGoogle Scholar
  8. M. Klessinger, Bond-Angle Deformation and Hybridization in H2O, Chem. Phys. Letters 4, 144 (1969).CrossRefGoogle Scholar
  9. K. J. Miller, S. R. Mielczarek, and M. Krauss, Energy Surface and Generalized Oscillator Strength of the 1A Rydberg State of H2O, J. Chem. Phys. 51, 26 (1969).CrossRefGoogle Scholar
  10. M. D. Newton, W. A. Lathan, W. J. Hehre, and J. A. Pople, Self-Consistent Molecular-Orbital Methods. III. Comparison of Gaussian Expansion and PDDO Methods Using Minimal STO Basis Sets, Chem. Phys. 51, 3927 (1969).Google Scholar
  11. J. D. Petke and J. L. Whitten, Ab Initio Studies of Orbital Hybridization in Polyatomic Molecules, J. Chem. Phys. 51, 3166 (1969).CrossRefGoogle Scholar
  12. H. Preuss and R. Janoschek, Wave-Mechanical Calculations on Molecules Taking All Electrons Into Account, J. Mol. Structure 3, 423 (1969).CrossRefGoogle Scholar
  13. E. Switkes, R. M. Stevens, and W. N. Lipscomb, Polyatomic SCF Calculations Utilizing Anisotropic Basis Sets of Slater-Type Orbitals, J. Chem. Phys. 51, 5229 (1969).CrossRefGoogle Scholar


  1. G. P. Arrighini and C. Guidotti, Experimental Data and Ab Initio Calculations of Some One-Electron Properties of the H2O Molecule: A Comparison, Chem. Phys. Letters 6, 435 (1970).CrossRefGoogle Scholar
  2. G. P. Arrighini, C. Guidotti, and O. Salvetti, SCF MO’s and Molecular Properties of H2O, J. Chem. Phys. 52, 1037 (1970).CrossRefGoogle Scholar
  3. G. P. Arrighini, M. Maestro, and R. Moccia, Magnetic Properties of Polyatomic Molecules. II. Proton Magnetic Shielding Constants in H2O, NH3, CH4, and CH3F, J. Chem. Phys. 52, 6411 (1970).CrossRefGoogle Scholar
  4. G. P. Arrighini, M. Maestro, and R. Moccia, Magnetic Properties of Polyatomic Molecules. III. Magnetic Shielding Constants of Heavy Nuclei in H2 17O, 14NH3, 13CH4, and 13CH3F, Chem. Phys. Letters 7, 351 (1970).CrossRefGoogle Scholar
  5. R. F. W. Bader and R. A. Gangi, The Lowest Singlet and Triplet Potential Surfaces of H2O, Chem. Phys. Letters 6, 312 (1970).CrossRefGoogle Scholar
  6. M. Cornille, M. Roux, and B. Tsapline, Some Molecular Compton Profiles, Acta Cryst. A26, 105 (1970).Google Scholar
  7. T. H. Dunning, Jr., Gaussian Basis Functions for Use in Molecular Calculations. I. Contraction of (9s5p) Atomic Basis Sets for the First-Row Atoms, J. Chem. Phys. 53, 2823 (1970).CrossRefGoogle Scholar
  8. B. Ford, G. G. Hall, and J. C. Packer, Molecular Modeling with Spherical Gaussians, Internat. J. Quantum Chem. 4, 533 (1970).CrossRefGoogle Scholar
  9. P. F. Franchini, R. Moccia, and M. Zandomeneghi, Extended Group Function Calculations for H2O, NH3, and CH4, Internat. J. Quantum Chem. 4, 487 (1970).CrossRefGoogle Scholar
  10. S. L. Guberman and W. A. Goddard III, Spin-Generalized SCF Wave Functions for H2O, OH, and O, J. Chem. Phys. 53, 1803 (1970).CrossRefGoogle Scholar
  11. J. A. Horsley and F. Flouquet, The Dissociation of NH3 and H2O in Excited States, Chem. Phys. Letters 5, 165 (1970).CrossRefGoogle Scholar
  12. R. P. Hosteny, R. R. Gilman, T. H. Dunning Jr., A. Pipano, and I. Shavitt, Comparison of Slater and Contracted Gaussian Basis Sets in SCF and CI Calculations on H2O, Chem. Phys. Letters 7, 325 (1970).CrossRefGoogle Scholar
  13. E. Montgomery, B. L. Bruner, and R. E. Knight, Applications of Variation-Perturbation Theory to Molecules. I. The Water Molecule, J. Chem. Phys. 52, 4407 (1970).CrossRefGoogle Scholar
  14. Y.-C. Pan and H. F. Hameka, Calculation of the Diamagnetic Susceptibility of the Water Molecule, J. Chem. Phys. 53, 1265 (1970).CrossRefGoogle Scholar
  15. R. M. Pitzer and D. P. Merrifield, Minimum Basis Wave Functions for Water, J. Chem. Phys. 52, 4782 (1970).CrossRefGoogle Scholar
  16. P. PuLay, Ab Initio Calculation of Force Constants and Equilibrium Geometries in Polyatomic Molecules. II. Force Constants of Water, Mol. Phys. 18, 473 (1970).CrossRefGoogle Scholar
  17. L. Thomas and H. W. Joy, Protonic Structure of Molecules. II. Methodology, Center-of-Mass Transformation, and the Structure of Methane, Ammonia, and Water, Phys. Rev. A2, 1200 (1970).Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • C. W. Kern
    • 1
  • M. Karplus
    • 2
  1. 1.Department of ChemistryBattelle Memorial Institute and The Ohio State UniversityColumbusUSA
  2. 2.Department of ChemistryHarvard UniversityCambridgeUSA

Personalised recommendations