Physicochemical Problems

  • R. B. Barlow


When considering any chemical process it is convenient to start with the Law of Mass Action, which states that the rate at which a substance reacts is proportional to its active mass. For gases and vapours the active mass is determined by the partial pressure which, from Avogadro’s hypothesis (equal volumes of all gases contain an equal number of molecules when at the same temperature and pressure), is directly related to the concentration expressed as parts by volume. For example the partial pressure of any anaesthetic in a mixture which is 4% by volume is 0.04 times atmospheric pressure. For substances in solution the active mass is determined by the molecular concentration, if the solution behaves ideally. If the empirical formula, C a H b N c O d etc. is known, the molecular weight can be calculated and the concentration is usually expressed in moles/litre, i.e. in molarity. Sometimes the concentration may be expressed as moles/kg solvent, i.e. in molality, or as the ratio of the number of molecules of solute to the total number of solute and solvent molecules present, i.e. as the mole fraction. If the solute and solvent do not behave ideally, and this applies particularly to salts in water, it is necessary to multiply the molarity by an activity coefficient to obtain the activity,which corresponds to the active mass.


Salicylic Acid Partition Coefficient Benzoic Acid Ethyl Alcohol Quantitative Aspect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Teorell, Arch. int. Pharmacodyn. (1937), no. 57, p. 205; ibid., p. 226. A. Goldstein, L. Aronow and S. M. Kalman, Principles of Drug Action, 2nd edn, Chapter 4, especially pp. 333–6 ( Wiley, New York, 1974 ).Google Scholar
  2. 2.
    L. S. Goodman and A. Gilman, The Pharmacological Basis of Therapeutics, 3rd edn p. 117 (Macmillan, New York, 1965): the partition coefficient between chloroform and buffer at pH 7.4 is 102, S. Mayer, R. P. Maickel and B. B. Brodie, Journal Pharmacol. (1959), no. 127, p. 205.Google Scholar
  3. 3.
    M. Dayson, A Textbook of General Physiology, 2nd edn, p. 226 ( Churchill, London, 1959 ).Google Scholar
  4. 4.
    A. Albert and E. P. Serjeant, The Determination of Ionization Constants, pp. 28, 29, 80 ( Chapman and Hall, London, 1971 ).Google Scholar
  5. 5.
    J. Armstrong and R. B. Barlow, British Journal Pharmacol. (1976), no. 57, p. 501.Google Scholar
  6. 6.
    L. P. Hammett, Chem. Review (1935), no. 17, p. 125.CrossRefGoogle Scholar
  7. 7.
    G. Kortüm, W. Vogel and K. Andrussov, Dissociation Constants of Organic Acids in Aqueous Solution (Butterworth, London, 1961); D. D. Perrin, Dissociation Constants of Organic Bases in Aqueous Solution and Supplement (Butterworth, London, 1965 and 1972 ).Google Scholar
  8. 8.
    R. Collander, Acta Chem. Scan. (1951), no. 5, p. 774.CrossRefGoogle Scholar
  9. 9.
    E. C. Bate-Smith and R. G. Westall, Biochim. Biophys. Acta (1950), no. 4, p. 427.CrossRefGoogle Scholar
  10. 10.
    C. Hansch, P. P. Maloney, T. Fujita and R. M. Muir, Nature (1962), no. 194, p. 178.CrossRefGoogle Scholar
  11. 11.
    T. Fujita, J. Iwasa and C. Hansch, Journal American Chem. Soc. (1964), no. 86, p. 5175.CrossRefGoogle Scholar
  12. 12.
    J. Iwasa, T. Fujita and C. Hansch, Journal Med. Chem. (1965), no. 8, p. 150.CrossRefGoogle Scholar
  13. 13.
    A. Leo, C. Hansch and D. Elkins, Chem. Review (1971), no. 71, p. 525.CrossRefGoogle Scholar
  14. 14.
    L. P. Hammett, Journal American Chem. Soc. (1937), no. 59, p. 96.CrossRefGoogle Scholar

Copyright information

© R.B. Barlow 1980

Authors and Affiliations

  • R. B. Barlow
    • 1
  1. 1.University of BristolUK

Personalised recommendations