Human Anxiety and Noradrenergic Function: Preliminary Studies with Caffeine, Clonidine and Yohimbine

  • T. W. Uhde
  • J.-P. Boulenger
  • B. Vittone
  • L. J. Siever
  • R. M. Post


Although several neurotransmitter systems have been implicated in the neurobiology of animal fear and human anxiety1, the focus of the present report in this regard is limited to the noradrenergic system. Several lines of evidence suggest an important role for noradrenergic function in the neurobiology of fear, anxiety, alarm and arousal (for review see Uhde et al.2,3). Redmond and Huang4 demonstrated that electrical and pharmacological activation of the noradrenergic nucleus locus coeruleus (LC) in the monkey produced fear behaviors similar to those occurring during exposure to natural threat in the wild. In addition to these behavioral manifestations of fear during LC activation, Redmond and colleagues4,5 documented temporally-related increases in the levels of noradrenaline and its metabolite, 3-methoxy-4-hydroxy-phenylethylene glycol (MHPG), in the brain, cerebrospinal fluid (CSF) and plasma.


Panic Disorder Panic Attack Noradrenergic System Panic Disorder Patient Affective Illness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Hoehn-Saric, Neurotransmitters in anxiety, Arch. Gen. Psychiatry 39:735 (1982).CrossRefGoogle Scholar
  2. 2.
    T.W. Uhde, J.-P. Boulenger, L.J. Siever, R.L. DuPont, and R.M. Post, Animal models of anxiety: implications for research in humans, Psychopharmacol. Bull., 18:47 (1982a).Google Scholar
  3. 3.
    T.W. Uhde, L.J. Siever and R.M. Post, Clonidine: acute challenge and clinical trial paradigms for the investigation and treatment of anxiety disorders, affective illness and pain syndromes, in: “Neurobiology of Mood Disorders”, R.M. Post and J.C. Ballenger, eds., Williams & Wilkins, Baltimore (1983).Google Scholar
  4. 4.
    D.E. Redmond, Jr., and Y.H. , Current concepts II. New evidence for a locus coeruleus-norepinephrine connection with anxiety, Life Sci. 25:2149 (1979).CrossRefGoogle Scholar
  5. 5.
    D.E. Redmond, Jr., Y.H. Huang, D.R. Snyder, and J.W. Maas, Behavioral effects of stimulation of the nucleus locus coeruleus in the stump-tailed monkey Macaca arctoides, Brain Res. 116:502 (1976).CrossRefGoogle Scholar
  6. 6.
    J.-P. Boulenger and T.W. Uhde, Peripheral biological correlates of anxiety, L’ Encephale 8:119 (1982a).Google Scholar
  7. 7.
    B.R. Morrow and A.H. Labrum, The relationship between psychological and physiological measures of anxiety, Psychol. Med. 8:95 (1978).CrossRefGoogle Scholar
  8. 8.
    R.J. Wyatt, B. Portnoy, D.J. Kupfer, F. Snyder and K. Engelman, Resting plasma catecholamine concentrations in patients with depression and anxiety, Arch. Gen. Psychiatry 24:65 (1971).CrossRefGoogle Scholar
  9. 9.
    R.M. Post, C.R. Lake, D.C. Jimerson, W.E. Bunney, Jr., J.H. Wood, M.G. Ziegler and F.K. Goodwin, Cerebrospinal fluid norepinephrine in affective illness, Am. J. Psychiatry 135:907 (1978).Google Scholar
  10. 10.
    T.W. Uhde, L.J. Siever, R.M. Post, D.C. Jimerson, J.-P. Boulenger and M.S. Buchsbaum, The relationship of plasma free MHPG to anxiety and psychophysical pain in normal volunteers, PsychoPharmacol. Bull. 18:129 (1982b).Google Scholar
  11. 11.
    J.C. Ballenger, R.M. Post, D.C. Jimerson, C.R. Lake, P. Lerner, W.E. Bunney, Jr., and F.K. Goodwin, Cerebrospinal fluid (CSF) noradrenergic correlations with anxiety in normals, Sci. Proc. Am. Psychiatr. Assoc. 134:235, 1981, Abstract #96.Google Scholar
  12. 12.
    G.N. Ko, J.D. Eisworth, R.H. Roth, B.G. Rifkin, H. Leigh, and D.E. Redmond, Jr., Panic-induced elevation plasma MHPG levels in phobic-anxious patients. Arch. Gen. Psychiatry 40:425 (1983).CrossRefGoogle Scholar
  13. 13.
    D.R. Sweeney, J.W. Maas and G.R. Heninger, State anxiety, physical activity and urinary 3-methoxy-4-hydroxyphenylethylene glycol excretion, Arch. Gen. Psychiatry 35:1418, 1978.CrossRefGoogle Scholar
  14. 14.
    R.M. Post and F.K. Goodwin, Studies of cerebrospinal fluid amine metabolites in depressed patients: conceptual problems and theoretical implications, in: “Biological Aspects of Depression”, J. Mendels, ed., Spectrum, John Wiley & Sons, New York (1975).Google Scholar
  15. 15.
    P.A. Blombery, I.J. Kopin, E.K. Gordon, S.P. Markey and M.H. Ebert, Conversion of MHPG to vanillymandelic acid, Arch. Gen. Psychiatry 37:1095 (1980).CrossRefGoogle Scholar
  16. 16.
    I.J. Kopin, E.K. Gordon, D.C. Jimerson and R.J. Polinsky, Relation between plasma and cerebrospinal fluid levels of 3-methoxy-4-hydroxyphenylglycol, Science 219:73 (1983).CrossRefGoogle Scholar
  17. 17.
    I.J. Kopin, P. Blombery, M.H. Ebert, E.K. Gordon, D.C. Jimerson, J.P. Markey and R.J. Polinsky, Disposition and metabolism of MHPG-CD3 in humans: plasma MHPG as the principal pathway of norepinephrine metabolism and as an important determinant of CSF levels of MHPG, in Proceedings of Nobel Conference on “Frontiers in Biochemical and Pharmacological Research in Depression”, Skokloster, Sweden, June, 1982, E. Usdin, ed., Raven Press, New York, 1983, in press.Google Scholar
  18. 18.
    J.-W. Maas, S.E. Hattox, N.M. Greene and D.H. Landis, 3-Methoxy-4-hydroxyphenethyleneglycol production by human brain in vivo, Science 205:1025 (1979).CrossRefGoogle Scholar
  19. 19.
    D.S. Charney, G.R. Heninger and D.E. Sternberg, Assessment of alpha-2 adrenergic autoreceptor function in humans: effects of oral yohimbine, Life Sci. 30:2033 (1982).CrossRefGoogle Scholar
  20. 20.
    J.R. Elsworth, D.E. Redmond, Jr. and R.H. Roth, Plasma and cerebrospinal fluid 3-methoxy-4-hydroxyphenylethylene glycol (MHPG) as indices of brain norepinephrine metabolism in primates, Brain Res. 235:115 (1982).CrossRefGoogle Scholar
  21. 21.
    J.A. Gray, The neuropsychology of anxiety, Br. J. Psychology 69:417 (1978).CrossRefGoogle Scholar
  22. 22.
    D.C. Jimerson, S.P. Markey, J.A. Oliner, and I.J. Kopin, Simultaneous measurement of plasma 4-hydroxy-3-methoxyphenylethylene glycol and 3,4-dihydroxyphenylethylene glycol by gas chromatography mass spectrometry, Biomed. Mass. Spectrometry 8:256 (1981).CrossRefGoogle Scholar
  23. 23.
    L.J. Siever and T.W. Uhde, New studies and perspectives on the noradrenergic receptor system in depression: effects of the alpha-2-adrenergic agonist clonidine, Biol. Psychiatry February, (1984).Google Scholar
  24. 24.
    D.S. Charney, G.R. Heninger and D.E. Redmond, Jr., Yohimbine- induced anxiety and increased noradrenergic function in humans: effects of diazepam and clonidine, Life Sci. 33:19 (1982).CrossRefGoogle Scholar
  25. 25.
    G. Holmberg and S. Gershon, Autonomic and psychic effects of yohimbine hydrochloride, Psychopharmacologia 2:93 (1961).CrossRefGoogle Scholar
  26. 26.
    J.-P. Boulenger and T.W. Uhde, Caffeine consumption and anxiety: preliminary results of a survey comparing patients with anxiety disorders and normal controls, Psychopharmacol. Bull. 18:53 (1982b).Google Scholar
  27. 27.
    R. Hoehn-Saric, A.F. Merchant, M.K. Keyser and V.K. Smith, Effects of clonidine on anxiety disorders, Arch. Gen. Psychiatry 38:1278 (1981).CrossRefGoogle Scholar
  28. 28.
    T.W. Uhde, D.E. Redmond, Jr. and H.O. Kleber, Clonidine suppresses the opioid abstinence syndrome without clonidine-with- drawal symptoms: a blind inpatient study, Psychiatry Res. 2:37 (1980).CrossRefGoogle Scholar
  29. 29.
    M.S. Gold, D.E. Redmond, Jr., and H.D. Kleber, Clonidine in opiate withdrawal, Lancet 1:929 (1978).CrossRefGoogle Scholar
  30. 30.
    J.-P. Boulenger, J. Patel, R.M. Post, A. Parma and P.J. Marangos, Chronic caffeine consumption increases the number of brain adenosine receptors, Life Sci. 32:1135 (1983).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • T. W. Uhde
    • 1
  • J.-P. Boulenger
    • 1
  • B. Vittone
    • 1
  • L. J. Siever
    • 2
  • R. M. Post
    • 1
  1. 1.National Institute of Mental HealthBiological Psychiatry BranchBethesdaUSA
  2. 2.Mt. Sinai School of MedicineNew YorkUSA

Personalised recommendations