Advertisement

The Function of LFA-1 in Cell-Mediated Killing and Adhesion: Studies on Heritable LFA-1, Mac-1 Deficiency and on Lymphoid Cell Self-Aggregation

  • Timothy A. Springer
  • Robert Rothlein
  • Donald C. Anderson
  • Steven J. Burakoff
  • Alan M. Krensky
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 187)

Abstract

Lymphocyte function associated antigen-1 (LFA-1) is a cell surface glycoprotein identified in mouse and human by monoclonal antibodies which inhibit cytolytic T lymphocyte (CTL) mediated cytolysis (1–5). LFA-1 contains noncovalently associated a and 3 subunits of Mr = 180,000 and 95,000, respectively. Anti-LFA-1 monoclonal antibodies (MAb) inhibit cytolysis by CTL and NK cells as well as proliferative responses to mitogens, alloantigens, and soluble antigens. LFA-1 is broadly distributed on leukocytes, including lymphocytes, granulocytes, and monocytes, but is not expressed on a number of other somatic cells. Anti-LFA-1 monoclonal antibodies inhibit conjugate formation between CTL and targets (1, 6, 7); therefore, LFA-1 may be instrumental in cell-cell adhesion.

Keywords

Beta Chain Adhesion Step Mediate Cytolysis Deficient Lymphocyte Immunofluorescence Flow Cytometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Davignon, E. Martz, T. Reynolds, K. Kurzinger, and T. A. Springer, Monoclonal antibody to a novel lymphocyte function- associated antigen (LFA-1): Mechanism of blocking of T lymphocyte -mediated killing and effects on other T and B lymphocyte functions, J. Immunol., 127:590 (1981).PubMedGoogle Scholar
  2. 2.
    M. Pierres, C. Goridis, and P. Goldstein, Inhibition of murine T cell-mediated cytolysis and T cell proliferation by a rat monoclonal antibody immunoprecipitating two lymphoid cell surface polypeptides of 94,000 and 180,000 molecular weight, Eur. J. Immunol., 12:60 (1982).PubMedCrossRefGoogle Scholar
  3. 3.
    F. Sanchez-Madrid, A. M. Krensky, C. F. Ware, E. Robbins, J. L. Strominger, S. J. Burakoff, and T. A. Springer, Three distinct antigens associated with human T lymphocyte-mediated cytolysis: LFA-1, LFA-2, and LFA-3, Proc. Natl. Acad. Sci. USA, 79:7489 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    J. E. K. Hildreth, F. M. Gotch, P. D. K. Hildreth, and A. M. McMichael, A human lymphocyte-associated antigen involved in cell-mediated lympholysis, Eur. J. Immunol., 13:202 (1983).PubMedCrossRefGoogle Scholar
  5. 5.
    A. M. Krensky, F. Sanchez-Madrid, E. Robbins, J. Nagy, T. A. Springer, and S. J. Burakoff, The functional significance, distribution, and structure of LFA-1, LFA-2, and LFA-3: cell surface antigens associated with CTL-target interactions, J. Immunol., 131:611 (1983).PubMedGoogle Scholar
  6. 6.
    P. Bongrand, M. Pierres, and P. Goldstein, T-cell mediated cytolysis: on the strength of effector-target cell interaction, Eur. J. Immunol., 13:424 (1983).PubMedCrossRefGoogle Scholar
  7. 7.
    A. M. Krensky, E. Robbins, T. A. Springer, and S. J. Burakoff, LFA-1, LFA-2 and LFA-3 antigens are involved in CTL-target conjugation, J. Immunol., 132:2180 (1984).PubMedGoogle Scholar
  8. 8.
    D. C. Anderson, F. C. Schmalsteig, S. Kohl, M. A. Arnaout, B. J. Hughes, M. F. Tosi, G. J. Buffone, B. R. Brinkley, W. D. Dickey, J. S. Abramson, T. A. Springer, L. A. Boxer, J. M. Hollers, and C. W. Smith, Abnormalities of polymorphonuclear leukocyte function associated with a heritable deficiency of high molecular weight surface glycoproteins (GP138): Common relationship to diminished cell adherence, J. Clin. Invest., 74:536 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    T. A. Springer, W. S. Thompson, L. J. Miller, F. C. Schmalstieg, and D. C. Anderson, Inherited deficiency of the Mac-1, LFA-1, pl50,95 glycoprotein family and its molecular basis, J. Exp. Med., in press.Google Scholar
  10. 10.
    D. C. Anderson, F. C. Schmalstieg, W. Shearer, K. Freeman, S. Kohl, C. W. Smith, and T. A. Springer, Abnormalities of PMN/ Monocyte function and recurrent infection associated with a heritable deficiency of adhesive surface glycoproteins, Fed. Proc., in press.Google Scholar
  11. 11.
    M. A. Arnaout, N. Dana, J. Pitt, and R. F. Todd, III, Deficiency of two human leukocyte surface membrane glycoproteins (Mol and LFA-1), Fed. Proc., in press.Google Scholar
  12. 12.
    S. Kohl, T. A. Springer, F. C. Schmalstieg, L. S. Loo, and D. C. Anderson, Defective natural killer cytotoxicity and polymorphonuclear leukocyte antibody-dependent cellular cytotoxicity in patients with LFA-1/0KM-1 deficiency, J. Immunol., in press.Google Scholar
  13. 13.
    T. A. Springer, D. Davignon, M. K. Ho, K. Kurzinger, E. Martz, and F. Sanchez-Madrid, LFA-1 and Lyt-2,3, molecules associated with T lymphocyte-mediated killing; and Mac-1, an LFA-1 homologue associated with complement receptor function, Immunol. Rev., 68:111 (1982).CrossRefGoogle Scholar
  14. 14.
    P. Goldstein, C. Goridis, A. M. Schmitt-Verhulst, B. Hayot, A. Pierres, A. Van Agthoven, Y. Kaufmann, Z. Eshhar, and M. Pierres, Lymphoid cell surface interaction structures detected using cytolysis-inhibiting monoclonal antibodies, Immunol. Rev., 68:5 (1982).CrossRefGoogle Scholar
  15. 15.
    M. Patarroyo, G. Yogeeswaran, P. Biberfeld, E. Klein, and G. Klein, Morphological changes, cell aggregation and cell membrane alterations caused by phorbol 12,13-dibutyrate in human blood lymphocytes, Int. J. Cancer, 30:707 (1982).PubMedCrossRefGoogle Scholar
  16. 16.
    M. Patarroyo, P. Biberfeld, E. Klein, and G. Klein, Phorbol 12,13-dibutyrate (P (Bu2))-treated human blood mononuclear cells bind to each other Cell. Immunol., 75:144 (1983).Google Scholar
  17. 17.
    M. Patarroyo, M. Jondal, J. Gordon, and E. Klein, Characterization of the phorbol 12,13-dibuytrate (P (Bu2)) induced binding between human lymphocytes, Cell. Immunol., 81:373 (1983)PubMedCrossRefGoogle Scholar
  18. 18.
    A. Hamann, D. Jablonski-Westrich, A. Raedler, and H.G. Thiele, Lymphocytes express specific antigen-independent contact interaction sites upon activation, Cell. Immunol., 86:14 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Timothy A. Springer
    • 1
    • 2
    • 3
  • Robert Rothlein
    • 1
    • 2
    • 3
  • Donald C. Anderson
    • 1
    • 2
    • 3
  • Steven J. Burakoff
    • 1
    • 2
    • 3
  • Alan M. Krensky
    • 1
    • 2
    • 3
  1. 1.Dana-Farber Cancer IstituteHarvard Medical SchoolBostonUSA
  2. 2.Baylor College of MedicineHoustonUSA
  3. 3.Stanford UniversityStanfordUSA

Personalised recommendations