Spectral Properties of Oxovanadium(IV) Complexes. IV. Correlation of ESR Spectra with Ligand Type

  • L. J. Boucher
  • Edmund C. Tynan
  • Teh Fu Yen


ESR spectral parameters, A0, A , A and go, g, g as well as electronic absorption maxima are listed for a number of oxovanadium(IV) complexes with a series of representative ligands. The four donor atoms of the ligands are: oxygen (β-diketones, oxalate, water), oxygen—nitrogen (β-ketimines, salicylaldimines), nitrogen (porphyrins, thiocyanate), sulfur (dithiocarbonate), chloride, and cyanide. The electronic structures of the square-based pyramidal oxovanadium(IV) complexes are discussed with the aid of spectral data. A plot of g values versus A values for each of the complexes maps out regions for donor types. Within each group, solvent and substituent effects on the spectra are also noted. The origin of the ESR correlation is related to the empirical dependence of the isotropic contact term on the molecular orbital coefficients and energy of the vanadium orbitals. Extension of this approach to systems in which the donor atom is unknown is suggested.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Carrington and A. D. McLachlan, Introduction to Magnetic Resonance ( Harper and Row, New York, 1967 ).Google Scholar
  2. 2.
    J. Peisach and W. E. Blumberg, this volume, Chapter 6.Google Scholar
  3. 3.
    H. J. M. Bowen, Trace Elements in Biochemistry ( Academic Press, New York, 1966 ).Google Scholar
  4. 4.
    H. J. Bielig and E. Bayer, Ann. Chem. 580, 135 (1953).CrossRefGoogle Scholar
  5. 5.
    D. Bertrand, Bull. Am. Mus. Nat. Hist. 94, 409 (1950).Google Scholar
  6. 6.
    O. A. Radchenko and L. S. Sheshiha, Visn. Neft. Nauch.-Issled. Geol. Inst. 33 (1), 274 (1955).Google Scholar
  7. 7.
    A. J. Saraceno, D. T. Fanale, and N. D. Coggeshall, Anal. Chem. 33, 500 (1961).CrossRefGoogle Scholar
  8. 8.
    E. W. Baker, T. F. Yen, J. P. Dickie, R. E. Rhodes, and L. F. Clark, J. Am. Cheni. Soc. 89, 3631 (1967).CrossRefGoogle Scholar
  9. 9.
    J. Selbin, Coord. Chem. Rev. 1, 293 (1966).CrossRefGoogle Scholar
  10. 10.
    R. P. Dodge, P. H. Templeton, and A. Zalkin, J. Chem. Phys. 35, 55 (1961).CrossRefGoogle Scholar
  11. 11.
    P. Kierkegaard and J. M. Longo, Acta Chem. Scand. 19, 1906 (1965).CrossRefGoogle Scholar
  12. 12.
    C. J. Ballhausen and H. B. Gray, Inorg. Chem. 1, 111 (1962).CrossRefGoogle Scholar
  13. 13.
    K. M. Jones and E. Larson, Acta Chem. Scand. 19, 1210 (1965).CrossRefGoogle Scholar
  14. 14.
    R. A. D. Wentworth and T. S. Piper, J. Chem. Phys. 41, 3884 (1964).CrossRefGoogle Scholar
  15. J. R. Wasson, J. Inorg. Nucl. Chem. 20, 171 (1968).CrossRefGoogle Scholar
  16. 16.
    J. Bernal and P. H. Rieger, Inorg. Chem. 2, 256 (1963).CrossRefGoogle Scholar
  17. 17.
    R. M. Golding, Mol. Phys. 5, 369 (1962).CrossRefGoogle Scholar
  18. 18.
    L. J. Boucher, E. C. Tynan, and T. F. Yen, Inorg. Chem. 7, 731 (1968).CrossRefGoogle Scholar
  19. 19.
    L. J. Boucher, E. C. Tynan, and T. F. Yen, Inorg. Chem. 8 (1969).Google Scholar
  20. 20.
    J. Selbin, Chem. Rev. 65, 153 (1965).CrossRefGoogle Scholar
  21. 21.
    H. Borcherts and C. Kikuchi, J. Chem. Phys. 40, 2270 (1964).CrossRefGoogle Scholar
  22. 22.
    K. DeArmond, B. B. Garrett, and H. S. Gutowsky, J. Chem. Phys. 12, 1019 (1965).CrossRefGoogle Scholar
  23. 23.
    H. A. Kuska, Thesis, Michigan State University, 1965.Google Scholar
  24. 24.
    D. Kivelson and S. K. Lee, J. Chem. Phys. 41, 1896 (1964).CrossRefGoogle Scholar
  25. 25.
    J. M. Assour, J. Chem. Phys. 43, 2477 (1965).CrossRefGoogle Scholar
  26. 26.
    N. M. Atherton, J. Locke, and J. A. McCleverty, Chem. and Ind. 1965, 1300.Google Scholar
  27. 27.
    R. Wilson and D. Kivelson, J. Chem. Phys. 44, 154 (1966).CrossRefGoogle Scholar
  28. 28.
    F. A. Walker, R. L. Carlin, and P. H. Rieger, J. Chem. Phys. 45, 4181 (1966).CrossRefGoogle Scholar
  29. 29.
    H. A. Kuska and M. T. Rogers, Inorg. Chem. 5, 3113 (1966).Google Scholar
  30. 30.
    B. R. McGarvey, “Electron Spin Resonance of Transition Metal Complexes,” in: Transition Metal Chemistry, Vol. 3, R. L. Carlin, ed. ( Marcel Dekker, New York, 1966 ).Google Scholar
  31. 31.
    B. R. McGarvey, J. Phys. Chem. 71, 51 (1967).CrossRefGoogle Scholar
  32. 32.
    G. K. Jorgensen, Absorption Spectra and Chemical Bonding in Complexes ( Pergamon Press, Oxford, 1962 ).Google Scholar
  33. 33.
    J. Selbin, L. H. Holmes, and S. P. McGlynn, J. Inorg. Nucl. Chem. 25, 1359 (1963).CrossRefGoogle Scholar
  34. 34.
    B. R. McGarvey, J. Chem. Phys. 41, 3743 (1964).CrossRefGoogle Scholar
  35. 35.
    J. M. Assour, J. Goldmacher, and S. E. Harrison, J. Chem. Phys. 43, 159 (1965).CrossRefGoogle Scholar
  36. 36.
    A. E. Martell and M. Calvin, Chemistry of the Metal Chelate Compounds ( Prentice Hall, Englewood Cliffs, New Jersey, 1952 ), p. 549.Google Scholar
  37. 37.
    R. L. Carlin and F. A. Walker, J. Am. Chem. Soc. 87, 2128 (1965).CrossRefGoogle Scholar
  38. 38.
    T. F. Yen, J. G. Erdman, and A. J. Saraceno, Anal. Chem. 34, 694 (1962).CrossRefGoogle Scholar
  39. 39.
    T. F. Yen, E. C. Tynan, G. B. Vaughan, and L. J. Boucher, in: Advances in Spectroscopy of Fuels, R. A. Friedel, ed. ( Plenum Press, New York, 1969 ).Google Scholar
  40. 40.
    K. Wuthrich, HeIv. Chim. Acta 48, 779, 1012 (1965).CrossRefGoogle Scholar
  41. 41.
    M. Zerner and M. Gouterman, Inorg. Chem. 5, 1699 (1966).CrossRefGoogle Scholar
  42. 42.
    R. S. Titte, Phys. Rev. 131, 623 (1963).CrossRefGoogle Scholar
  43. 43.
    J. P. Dickie and Teh Fu Yen, American Chemical Society, Div. Petroleum Chemistry, Preprints 13 (2), F140 (1968).Google Scholar

Copyright information

© Plenum Press, New York 1969

Authors and Affiliations

  • L. J. Boucher
    • 1
  • Edmund C. Tynan
    • 1
  • Teh Fu Yen
    • 1
  1. 1.Department of ChemistryMellon Institute, Carnegie-Mellon UniversityPittsburghUSA

Personalised recommendations