Quadrupole Effects in Electron Paramagnetic Resonance Spectra of Polycrystalline Copper and Cobalt Complexes

  • Louis D. Rollmann
  • Sunney I. Chan


A second-order theory, including quadrupole effects and transitions with Δm I > 0, for the calculation of EPR spectra of polycrystalline samples of S = ½ transition-metal ion complexes possessing axial symmetry has been developed. With this theory the EPR spectrum of Cu(acac)2 in Pd(acac)2 and that of Na4CoPTS in DMSO could be explained in detail. The effects of electric quadrupole interaction together with a large anisotropy in the nuclear hyperfine coupling are shown. The advantages of obtaining spectra at two frequencies for the determination of reliable spin-Hamiltonian parameters are demonstrated.


Electron Paramagnetic Resonance Spectrum Hyperfine Interaction Quadrupole Interaction Cobalt Complex Resonance Field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. H. Maki and B. R. McGarvey, J. Chem. Phys. 29, 31 (1958).CrossRefGoogle Scholar
  2. 2.
    J. D. Swalen and H. M. Gladney, IBM J. Res. Dee. 8, 515 (1964).CrossRefGoogle Scholar
  3. 3.
    T. S. Johnston and H. G. Hecht, J. Mol. Spectry. 17, 98 (1965).CrossRefGoogle Scholar
  4. 4.
    R. Neiman and D. Kivelson, J. Chem. Phys. 35, 156 (1961).CrossRefGoogle Scholar
  5. 5.
    H. R. Gersmann and J. D. Swalen, J. Chem. Phys. 36, 3221 (1962).CrossRefGoogle Scholar
  6. 6.
    T. Vänngard and R. Aasa, in: Paramagnetic Resonance, Vol. II, W. Low, ed. ( Academic Press, New York, 1963 ), p. 509.Google Scholar
  7. 7.
    L. D. Rollmann and R. T. Iwamoto, J. Am. Chem. Soc. 90, 1455 (1968).CrossRefGoogle Scholar
  8. 8.
    J. M. Assour, J. Am. Chem. Soc. 87, 4701 (1965).CrossRefGoogle Scholar
  9. 9.
    A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. (London) A205, 135 (1951).Google Scholar
  10. 10.
    B. Bleaney, Phil. Mag. 42, 441 (1951).Google Scholar
  11. 11.
    B. Bleaney, Proc. Phys. Soc. (London) A63, 407 (1950).Google Scholar
  12. 12.
    L. S. Singer, J. Chem. Phys. 23, 379 (1955).CrossRefGoogle Scholar
  13. 13.
    R. H. Sands, Phys. Rev. 99, 1222 (1955).CrossRefGoogle Scholar
  14. 14.
    B. Bleaney, Proc. Phys. Soc. (London) A75, 621 (1960).Google Scholar
  15. 15.
    J. W. Searl, R. C. Smith, and S. J. Wyard, Proc. Phys. Soc. (London) A78, 1174 (1961).Google Scholar
  16. 16.
    F. K. Kneubiihi, J. Chem. Phys. 33, 1074 (1960).CrossRefGoogle Scholar
  17. 17.
    W. C. Fernelius and B. E. Bryant, in: Inorganic Syntheses, Vol. V, T. Moeller, ed. ( McGraw-Hill Book Co., New York, 1957 ), p. 105.CrossRefGoogle Scholar
  18. 18.
    B. Bleaney, K. D. Bowers, and D. J. E. Ingram, Proc. Phys. Soc. (London) A64, 758 (1951).Google Scholar
  19. 19.
    B. R. McGarvey, J. Phys. Chem. 71, 51 (1967).CrossRefGoogle Scholar
  20. 20.
    N. Kataoka and H. Kon, J. Am. Chem. Soc. 90, 2978 (1968).CrossRefGoogle Scholar
  21. 21.
    T. S. Piper and R. L. Belford, Mol. Phys. 5, 169 (1962).CrossRefGoogle Scholar
  22. 22.
    S. E. Harrison and J. M. Assour, J. Chem. Phys. 40, 365 (1964).CrossRefGoogle Scholar
  23. 23.
    K. Lee and W. A. Anderson, A Table of Nuclear Spins, Moments, and Magnetic Resonance Frequencies (Varian Associates, Palo Alto, California, 1967 ).Google Scholar
  24. 24.
    A. J. Freeman and R. E. Watson, in: Magnetism, Vol. IIA, G. T. Rado and H. Suhl, eds. ( Academic Press, New York, 1965 ), p. 167.Google Scholar
  25. 25.
    J. M. Assour and W. K. Kahn, J. Am. Chem. Soc. 87, 207 (1965).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1969

Authors and Affiliations

  • Louis D. Rollmann
    • 1
  • Sunney I. Chan
    • 1
  1. 1.Arthur Amos Noyes Laboratory of Chemical PhysicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations