Ultraviolet-Induced Damage and Its Repair in Human DNA

  • W. L. Carrier
  • R. D. Snyder
  • J. D. Regan
Part of the Photobiology book series (PB)


Electromagnetic radiation of appropriate wavelength and intensity can induce damage in cellular macromolecular structures. Ultraviolet (UV) radiation can, for example, damage many cellular structures, including membranes, protein, RNA, and, of course, DNA. Almost all cells, including human cells growing in tissue culture, show a striking lowering of viability after moderate doses of UV irradiation. There is evidence suggesting that damage to DNA is the primary event responsible for UV-induced cell degeneration and death (1–3). Although cause and effect has not been definitely established, a number of experimental correlations support the theory that UV-induced DNA pyrimidine dimers represent one of the principal causative agents in the death and mutation of mammalian cells. Certainly, the identification of dimers as inactivating agents in human cells has provided us with the best insight available into an understanding of the role of cellular DNA repair processes in environmental carcinogenesis.


Excision Repair Fanconi Anemia Xeroderma Pigmentosum Pyrimidine Dimer Thymine Dimer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Setlow, R. B., and Setlow, J. K. (1972): Effects of radiation on polynucleotides. Rev. Biophys. Bioeng. 1:293–346.CrossRefGoogle Scholar
  2. 2.
    Setlow, R. B. (1974): The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. Proc. Natl. Acad. Sci. U.S.A., 71:3363–3366.PubMedCrossRefGoogle Scholar
  3. 3.
    Elkind, M. M., Han, A., and Chang-Liu, C. (1978): Sunlight induced mammalian cell killing: Acomparative study of ultraviolet and near-ultraviolet inactivation. Photochem. Photobiol. 27:709–715.PubMedCrossRefGoogle Scholar
  4. 4.
    Kantor, G. J., and Hull, D. R. (1979): Effects of ultraviolet light on RNA and protein synthesis in non-dividing human diploid fibroblasts Biophys. J. 27:359–370.PubMedCrossRefGoogle Scholar
  5. 5.
    Sauerbier, W. (1976): Ultraviolet light damage at the transcriptional level. Adv. Radiat. Biol. 6:49–106.Google Scholar
  6. 6.
    Sutherland, B. M. (1978): Photoreactivation in mammalian cells. In: Aspects of Genetic Action and Evolution, edited by G. H. Bowine and Danielli, Int. Rev. CytoL 1978 (Supplt 8):301–333.Google Scholar
  7. 7.
    Mortelmans, K., Cleaver, J. E., Friedberg, E. C., et al. (1977): Photoreactivation of thymine dimers in UV-irradiated human cells: Unique dependence on culture conditions. Mutat. Res. 44:433–446.PubMedCrossRefGoogle Scholar
  8. 8.
    Lehmann, A. R. (1975): Postreplication repair of DNA in mammalian cells. Life Sci. 15:2005–2016.CrossRefGoogle Scholar
  9. 9.
    Buhl, S. N., Setlow, R. B., and Regan, J. D. (1972): Steps in DNA chain elongation and joining after ultraviolet irradiation of human cells. Int. J. Radiat. Biol. 22:417–425.CrossRefGoogle Scholar
  10. 10.
    Waters, R., and Regan, J. D. (1976): Recombination of UV-induced pyrimidine dimers in human fibroblasts. Biochem. Biophys. Res. Commun. 72:803–807.PubMedCrossRefGoogle Scholar
  11. 11.
    Meneghini, R., and Hanawalt, P. (1976): T4-endonuclease V-sensitive sites in DNA from ultraviolet-irradiate human cells. Biochim. Biophys. Acta 425:428–437.PubMedCrossRefGoogle Scholar
  12. 12.
    Lehmann, A. R., and Krik-Bell, S. (1978): Pyrimidine dimer sites associated with the daughter DNA strands in UV-irradiated human fibroblasts. Photochem. Photobiol. 27:297–307.PubMedCrossRefGoogle Scholar
  13. 13.
    Setlow, R. B., and Carrier, W. L. (1964): The disappearance of thymine dimers from DNA: An error-correcting mechanism. Proc. Natl. Acad. Sci. U.S.A. 51:226–231.PubMedCrossRefGoogle Scholar
  14. 14.
    Boyce, R. P., and Howard-Flanders, P. (1964): Release of ultraviolet light-induced thymine dimers from DNA of E. coli. Proc. Natl. Acad. Sci. U.S.A. 51:293–300.CrossRefGoogle Scholar
  15. 15.
    Cleaver, J. E. (1974): Repair processes for photochemical damage in mammalian cells. Adv. Radiat. Biol. 4:74.Google Scholar
  16. 16.
    Hanawalt, P. C., Cooper, P. K., Ganesan, A. K., et al (1979): DNA repair in bacteria and mammalian cells. Ann. Rev. Biochem. 48:783–836.PubMedCrossRefGoogle Scholar
  17. 17.
    Carrier, W. L., and Setlow, R. B. (1971): Theexcision of pyrimidine dimers (The detection of dimers in small amounts). In: Methods in of Enzymology, edited by L. Grossman and K. Moldave, Vol. XX, Part D. Academic Press, New York.Google Scholar
  18. 18.
    Paterson, M. C. (1978): Use of purified lesion-recognizing enzymes to monitor DNA repair in vivo. Adv. Radiat. Biol. 7:1–53.Google Scholar
  19. 19.
    Trosko, J. E., Krause, D., and Isoun, M. (1970): Sunlight-induced pyrimidine dimers in human cells in vitro. Nature 228:358–359.PubMedCrossRefGoogle Scholar
  20. 20.
    Strickland, P. T., Burns, F. J., and Albert, R. D. (1979): Induction of skin tumors in rats by single exposure to ultraviolet radiation. Photochem. Photobiol. 30:683–688.PubMedCrossRefGoogle Scholar
  21. 21.
    Sisson, W. B., and Caldwell, M. M. (1975): Lamp/filter systems for simulation of solar UV irradiance under reduced atmospheric ozone. Photochem. Photobiol. 21:453–456.CrossRefGoogle Scholar
  22. 22.
    Krizek, D. T., and Koch, J. E. (1979): Use of regression analysis to estimate UV-spectral irradiance from broad band radiometer readings under FS40 fluorescent sunlamps filtered with cellulose acetate. Photochem. Photobiol. 30:483–489.CrossRefGoogle Scholar
  23. 23.
    Rothman, R. H., and Setlow, R. B. (1979): Anactionspectrumforcellkillingandpyrimidine dimer formation in Chinese hamster V-79 cells. Photochem. Photobiol. 29:57–61.CrossRefGoogle Scholar
  24. 24.
    Unrau, P., Wheatcroft, R., and Cox, B. S. (1972): Methods for the assay of ultraviolet light-induced pyrimidine dimers in Saccharomyces cerevisia. Biochim. Biophys. Acta 269:311–321.CrossRefGoogle Scholar
  25. 25.
    Goldmann, K., and Friedberg, E. C. (1973): Measurement of thymine dimers in DNA by thin-layer chromatography. Anal. Biochem. 53:124.PubMedCrossRefGoogle Scholar
  26. 26.
    Rasmussen, R. E., and Painter, R. B. (1964): Evidence for repair of ultraviolet damaged deoxyribonuclease acid cultured mammalian cells. Nature 203:1360–1362.PubMedCrossRefGoogle Scholar
  27. 27.
    Regan, J. D., Setlow, R. B., and Ley, R. D. (1971): Normal and defective repair of damaged DNA in human cells: A sensitive assay utilizing the photolysis of bromodeoxyuridine. Proc. Natl. Acad. Sci. U.S.A. 68:708–712.PubMedCrossRefGoogle Scholar
  28. 28.
    Pettijohn, D., and Hanawalt, P. (1964): Evidence for repair replication of ultraviolet damaged in bacteria. J. Mol Biol. 9:395–410.PubMedCrossRefGoogle Scholar
  29. 29.
    Rasmussen, R. E., and Painter, R. B. (1966): Radiation-stimulated DNA synthesis in cultured mammalian cells. J. Cell Biol. 29:11–19PubMedCrossRefGoogle Scholar
  30. 30.
    Cleaver, J. E. (1968): Defective repair replication of DNA in xeroderma pigmentosum. Nature 218:652–656.PubMedCrossRefGoogle Scholar
  31. 31.
    Scudiero, D., and Strauss, B. (1974): Accumulation of single-stranded region in DNA and the block to replication in a human cell line alkylated with methyl methanesulfonate. J. Mol. Biol. 83:17–34.PubMedCrossRefGoogle Scholar
  32. 32.
    McGrath, R. A., and Williams, R. W. (1966): Reconstruction in vivo of irradiated Escherichia coli deoxyribonucleic acid: The rejoining of broken pieces. Nature 212:534–535.PubMedCrossRefGoogle Scholar
  33. 33.
    Kohn, K. W., Erickson, L. C., Weig, R. A. G., et al. (1976): Fractionation of DNA from mammalian cells by alkaline elution. Biochemistry 15:4629–4637.PubMedCrossRefGoogle Scholar
  34. 34.
    Ahnstrom, G., and Edwardsson, K. A. (1974): Radiation-induced single-strand breaks in DNA determined by rate of alkaline strand separation and hydroxylopatite deromato-graphy: An alternative to velocity sedimentation. Int. J. Radiat. Biol. 26:279–292.CrossRefGoogle Scholar
  35. 35.
    Cook, P. R., and Brazell, I. A. (1976): Conformational constraints in nuclear DNA. J. Cell. Sci. 22:287–302.PubMedGoogle Scholar
  36. 36.
    Vunakis, H. V. (1980): Immunological detection of radiation damage in DNA. Photochem. Photobiol. Rev. 5:293–311.CrossRefGoogle Scholar
  37. 37.
    Dunn, W. C., and Regan, J. D. (1979): Inhibition of DNA excision repair in human cells by arabinofuranosyl cytosine: Effect on normal and xeroderma pigmentosum cells. Mol. Pharmacol. 15:367–374.PubMedGoogle Scholar
  38. 38.
    Collins, A. R. S., Schor, S. L., and Johnson, R. T. (1977): The inhibition of repair in UV irradiated human cells. Mutat. Res. 42:413–432.PubMedCrossRefGoogle Scholar
  39. 38.
    Synder, R. D., Carrier, W. L., and Regan, J. D. (1981): Application of Arabinofuranosyl cytopine in the kinetic analysis and quantitation of DNA repair in human cells after ultraviolet irradiation. Biophys. J. 35:339–350.CrossRefGoogle Scholar
  40. 40.
    Strauss, B. S. (1962): Differential destruction of the transforming activity of damaged deoxyribonucleic acid by a bacterial enzyme. Proc. Natl. Acad. Sci. U.S.A. 48:1670–1675.PubMedCrossRefGoogle Scholar
  41. 41.
    Carrier, W. L., and Setlow, R. B. (1966): Excision of pyrimidine dimers from irradiated deoxyribonucleic acid in vivo. Biochim. Biophys. Acta 129:318–325.CrossRefGoogle Scholar
  42. 42.
    Marmur, J. (1961): A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218.CrossRefGoogle Scholar
  43. 43.
    Carrier, W. L., and Setlow, R. B. (1971): Paperstripmethodforassayinggradientfractions containing radioactive macromolecules. Anal. Biochem. 43:427–431.PubMedCrossRefGoogle Scholar
  44. 44.
    Haseltine, W. A., Gordon, L. K., Lindan, C. P., et al (1980): Cleavage of pyrimidine dimers in specific DNA sequences by a pyrimidine dimer DNA-glycosylase of M. luteus. Nature 285:634–460.PubMedCrossRefGoogle Scholar
  45. 45.
    Radany, E. H., and Friedberg, E. C. (1980): A pyrimidine dimer-DNA glycosylase activity associated with the v gene product of bacteriophage T4. Nature 286:182–185.PubMedCrossRefGoogle Scholar
  46. 46.
    Regan, J. D., Trosko, J. E., and Carrier, W. L. (1968): Evidenceforexcision of ultraviolet-induced pyrimidine dimers from the DNA of human cells in vitro. Biophys. J. 8:319–325.CrossRefGoogle Scholar
  47. 47.
    Setlow, R. B., Regan, J. R., German, J., et al. (1969): Evidence that xeroderma pigmentosum cells do not perform the first step in the repair of ultraviolet damage to their DNA. Proc. Natl. Acad. Sci. U.S.A. 64:1035–1041.PubMedCrossRefGoogle Scholar
  48. 48.
    Friedberg, E. C., Ehmann, U. K., and Williams, J. I. (1979): Humandiseases associated with defective DNA repair. Adv. Radiat. Biol. 8:85–160.Google Scholar
  49. 49.
    Paterson, M. C., Smith, B. P., Lohman, P. H. M., et al. (1976): Defective excision repair of gamma-ray damaged DNA in human (Ataxia telangiectasia) fibroblasts. Nature 260:444–447.PubMedCrossRefGoogle Scholar
  50. 50.
    Fornace, A. J., Jr., and Little, J. B. (1980): Normal repair of DNA single-strand breaks in patients with Ataxia telangiectasia. Biochim. Biophys. Acta 607:432–437.PubMedCrossRefGoogle Scholar
  51. 51.
    Remsen, J. F., and Cerutti, P. A. (1976): Deficiency of gamma-ray excision repair in skin fibroblasts from patients with Fanconi’s anemia. Proc. Natl. Acad. Sci. U.S.A. 73:2419–2423.PubMedCrossRefGoogle Scholar
  52. 52.
    Isomura, K., Nikaido, O., Horikawa, M., et al. (1973): Repair of DNA damage in ultraviolet-sensitive cells isolated from HeLa S3 cells. Radiat. Res. 53:143–152.PubMedCrossRefGoogle Scholar
  53. 53.
    Amacher, D. E., Elliott, J. A., and Lieberman, M. W. (1977): Differences in the removal of acetylaminofluorine and pyrimidine dimers from the DNA of cultured mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 774:1553–1557.CrossRefGoogle Scholar
  54. 54.
    Ehmann, U. K., Cook, K. H., and Friedberg, E. C. (1978): The kinetics of thymine dimer excision in ultraviolet-irradiated human cells. Biophys. J. 22:249–264.PubMedCrossRefGoogle Scholar
  55. 55.
    Regan, J. D., Carrier, W. L., Smith, D. P., et al. (1979): Pyrimidinedimerexcisioninhuman cells and skin cancer. Natl. Cancer Inst. Monogr. 50:141–143.Google Scholar
  56. 56.
    Williams, J. I., and Cleaver, J. E. (1978): Excision repair of ultraviolet damage in mammalian cells. Evidence for two steps in the excision of pyrimidine dimers. Biophys. J. 22:265–279.PubMedCrossRefGoogle Scholar
  57. 57.
    Ahmed, F. E., and Setlow, R. B. (1978): Kinetics of DNA repair in ultraviolet-irradiated and iV-acetoxy-2-acetylaminofluorene-treated mammalian cells. Biophys. J. 24:665–674.PubMedCrossRefGoogle Scholar
  58. 58.
    Ahmed, F. E., and Setlow, R. B. (1979): Saturation of DNA repair in mammalian cells. Photochem. Photobiol. 29:983–989.PubMedCrossRefGoogle Scholar
  59. 59.
    Inoue, M., and Takebe, H. (1978): DNA repair capacity and rate of excision repair in UV-irradiated mammalian cells. Jpn. J. Hum. Genet. 58:285–295.Google Scholar
  60. 60.
    Konze-Thomas, B., Levinson, J. W., Mäher, V. M., et al (1979): Correlation among the rates of dimer excision, DNA repair replication and recovery of human cells from potentially lethal damage induced by ultraviolet radiation. Biophys. J. 28:315–326.PubMedCrossRefGoogle Scholar
  61. 61.
    Edenberg, H. J., and Hanawalt, P. C. (1973): The time course of DNA repair replication in ultraviolet irradiated HeLa cells. Biochim. Biophys. Acta 324:206–217.PubMedCrossRefGoogle Scholar
  62. 62.
    Friedberg, E. C., and Lehman, I. R. (1974): Excision of thymine dimers by proteolytic and amber fragments of E. coli DNA polymerase I. Biochem. Biophys. Res. Commun. 58:132–139.PubMedCrossRefGoogle Scholar
  63. 63.
    Masker, W. E. (1977): Deoxyribonucleic acid repair in vitro by extracts of Escherichia coli. J. Baceriol 129:1415–1423.Google Scholar
  64. 64.
    Cleaver, J. E. (1978): DNA repair and its coupling to DNA replication in eukaryotic cells. Biochim. Biophys. Acta 516:489–516.PubMedGoogle Scholar
  65. 65.
    Regan, J. D., Smith, D. P., and Carrier, W. L. (1979): Excision of pyrimidine dimers from the DNA of human cells exposed to 254 nm radiation or to simulated sunlight from an FS40 lamp. Abstract, 7th Annual Meeting of the American Society for Photobiology, Asilimar.Google Scholar
  66. 66.
    Carrier, W. L., and Regan, J. D. (1980): The number and fate of near-UV (FS40 sunlamp) and far-UV (254 nm) induced pyrimidine dimers in the DNA of human fibroblasts. Radiat. Res. 83:424.Google Scholar
  67. 67.
    Todd, P., and Han, A. (1976): Ultraviolet-induced DNA to protein cross-linking in mammalina cells. In: Aging, Carcinogenesis and Radiation Biology. The Role of Nucleic Acid Addition Reactions, edited by K. C. Smith, pp. 83–104. Plenum Press, New York.Google Scholar
  68. 68.
    Gautschi, J. R., Young, B. R., and Cleaver, J. E. (1973): Repair of damaged DNA in the absence of protein synthesis in mammalian cells. Exp. Cell Res. 75:87–94.CrossRefGoogle Scholar
  69. 69.
    Regan, J. D., and Setlow, R. B. (1974): Two forms of repair in the DNA of human cells damaged by chemical carcinogens and mutagens. Cancer Res. 34:3318–3325.PubMedGoogle Scholar
  70. 70.
    Regan, J. D., and Setlow, R. B. (1973): Repair of chemical damage to human DNA. In: Chemical Mutagens: Principles and Methods for Their Detection, edited by A. Hollaender, pp. 151–170. Plenum Press, New York.Google Scholar
  71. 71.
    Rahn, R. O. (1979): Non-dimer damage in deoxyribonucleic acid caused by ultraviolet radiation. In: Photochemical and Photobiological Reviews, Vol. 4, edited by K. C. Smith, pp. 267–330. Plenum Press, New York.CrossRefGoogle Scholar
  72. 72.
    Varghese, A. J. (1972): Photochemistry of nucleic acids and their constituents. In: Photophysiology, Vol. VII, edited by A. C. Giese, pp. 207–274. Academic Press, New York.Google Scholar
  73. 73.
    Patrick, N. H., and Rahn, R. (1976): Photochemistry of DNA and polynucleotides: Photoproducts. In: Photochemistry and Photobiology of Nucleic Acids, Vol. II, edited by S. Y. Wang, pp. 35–95. Academic Press, New York.Google Scholar
  74. 74.
    Hariharan, P. V., and Cerutti, P. A. (1977): Formation of products of the 5,6-dihydro-xythymine type by ultraviolet light in HeLa cells. Biochemistry 16:2791–2795.PubMedCrossRefGoogle Scholar
  75. 75.
    Remsen, J. F., and Cerutti, P. A. (1977): Excision of gamma-ray induced thymine lesions by preparations from Ataxia telangiectasia fibroblasts. Mutat. Res. 43:139–146.PubMedCrossRefGoogle Scholar
  76. 76.
    Cerutti, P. A., and Vanderhoek, C. (1976): Photochemistry of DNA and polynucleotides: Photoproducts. In: Photochemistry and Photobiology of Nucleic Acids, Vol. II, edited by S. Y. Wang, pp. 83–87. Academic Press, New York.Google Scholar
  77. 77.
    Setlow, R. B., and Carrier, W. L. (1970): Cytidine photoproducts in DNA. Biophys. Soc. Abtracts 10:255a.Google Scholar
  78. 78.
    Bjursell, G. E., Gussander, E., and Lindahl, T. (1979): Long regions of single-stranded DNA in human cells. Nature 280:420–423.PubMedCrossRefGoogle Scholar
  79. 79.
    Brent, T. P. (1972): Repair enzyme suggested by mammalian endonuclease activity specific for ultraviolet-irradiated DNA. Nature [.New Biol.] 239:172–173.Google Scholar
  80. 80.
    Kuhnlein, V., Penhoet, E., and Linn, S. (1976): An altered apurinic endonuclease activity in xeroderma pigmentosum fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 73:1169–1173.PubMedCrossRefGoogle Scholar
  81. 81.
    Sasaki, M. S., and Tonomura, A. (1973): A high susceptibility of Fanconi’s anemia to chromosome breakage by DNA cross-linking agents. Cancer Res. 33:1829–1836.PubMedGoogle Scholar
  82. 82.
    Mäher, V. M., and McCormick, J. J. (1976): Effect of DNA repair on the cytotoxicity and mutagenicity of UV irradiation and of chemical carcinogens in normal and xeroderma pigmentosum cells. In: Biology of Radiation Carcinogenesisy, edited by J. M. Yuhas, R. W. Tennant, and J. D. Regan, pp. 129–145. Raven Press, New York.Google Scholar
  83. 83.
    Keijzer, W., Jaspers, N. G. J., Abrahama, P. J., et al. (1979): A seventh complementation group in excision-deficient xeroderma pigmentosum. Mutat. Res. 62:183–190.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • W. L. Carrier
    • 1
  • R. D. Snyder
    • 1
  • J. D. Regan
    • 1
  1. 1.Biology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations