Transforming Activity of Viruses after Dye—Light Inactivation

  • F. Rapp
  • J.-L. H. Li
Part of the Photobiology book series (PB)


The phenomenon of photodynamie inactivation was first reported by Raab (1) at the beginning of this century (he observed that paramecia lived while suspended in acridine orange solution and kept in the dark, but were rapidly killed when exposed to normal daylight). More extensive investigations were subsequently carried out with bacteriophages (2–4) and animal viruses (5–11) and the procedure is receiving ever-increasing attention, particularly since it has been applied as a therapeutic measure for the treatment of patients with herpetic infections.


Herpes Simplex Virus Methylene Blue Herpes Simplex Virus Type Toluidine Blue Herpes Genitalis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raab, O. (1900): Ueber die Wirkung fluoresciernder Stoffe auf Infusorien. Z. Biol. 39:524–546.Google Scholar
  2. 2.
    Schultz, E. W., and Krueger, A. P. (1928): Inactivation of staphylococcus bacteriophage by methylene blue. Proe. Soc. Exp. Biol. Med. 26:100–101.Google Scholar
  3. 3.
    Clifton, C. E., and Lawler, T. G. (1930): Inactivation of staphylococcus bacteriophage by toluidine blue. Proc. Soc. Exp. Biol. Med. 27:1041–1042.Google Scholar
  4. 4.
    Clifton, C. E. (1930): Photodynamic action of certain dyes on the inactivation of staphylococcus bacteriophage. Proc. Soc. Exp. Biol. Med. 28:745–746.Google Scholar
  5. 5.
    Perdrau, J. R., and Todd, C. (1933) The photodynamic action of methylene blue on certain viruses. Proc. R. Soc. Lond. [Biol.] 112: 288–298.CrossRefGoogle Scholar
  6. 6.
    Wallis, C., and Melnick, J. L. (1965): P%&todynamic inactivation of animal viruses: A review. Photochem. Photobiol. 4:159–170.CrossRefGoogle Scholar
  7. 7.
    Hanson, C. V., Riggs, J. L., and Lennette, E. H. (1978): Photochemical inactivation of DNA and RNA viruses by psoralen derivatives. J. Gen. Virpl. 40:345–358.CrossRefGoogle Scholar
  8. 8.
    Hanson, C. V. (1979): Photochemical inactivation of deoxyribonucleic and ribonucleic acid viruses by chlorpromazine. Antimicrob. Agents Chemother. 15:461–464.PubMedCrossRefGoogle Scholar
  9. 9.
    Melnick, J., Khan, N. C., and Biswal, N. (1977): Photodynamic inactivation of herpes simplex virus and its DNA. Photochem. Photobiol. 25:341–342.PubMedCrossRefGoogle Scholar
  10. 10.
    Melnick, J. L., and Wallis, C. (1977): Photodynamic inactivation of herpes simplex virus: A status report. Ann. N. Y. Acad. Sci. 284:171–181.PubMedCrossRefGoogle Scholar
  11. 11.
    Yen, G. S. L., and Simon, E. H. (1978): Photosensitization of herpes simplex virus type 1 with neutral red. J. Gen. Virol. 41:273–281.PubMedCrossRefGoogle Scholar
  12. 12.
    Moore, C., Wallis, C., Melnick, J. L., et al. (1972): Photodynamic treatment of herpes keratitis. Infect. Immun. 5:169–171.PubMedGoogle Scholar
  13. 13.
    Lahav, M., Dueker, D., Bhatt, P. N., et al. (1975): Photodynamic inactivation in experimental herpetic keratitis. Arch. Ophthalmol. 93:207–214.PubMedCrossRefGoogle Scholar
  14. 14.
    Stanley, J. A., and Pinnolis, M.(1976): Lightintensityonthephotodynamicinactivationof herpes simplex keratitis. Am. J. Ophthalmol. 81:332–336.PubMedGoogle Scholar
  15. 15.
    Felber, T. D., Smith, E. B., Knox, J. M., et al. (1973): Photodynamic inactivation of herpes simplex: Report of a clinical trial. J. AMA 223:289–292.Google Scholar
  16. 16.
    Friedrich, E. G. (1973): Relief for herpes vulvitis. Obstet. Gynecol. 41:74–77.PubMedGoogle Scholar
  17. 17.
    Nahmias, A. J., and Dowdle, W. R. (1968): Antigenic and biologic differences in herpesvirus hominis. Prog. Med. Virol. 10:110–159.PubMedGoogle Scholar
  18. 18.
    Wallis, C., Melnick, J. L., and Kaufman, R. H. (1972): Herpes genitalis management — present and predicted. Clin. Obstet. Gynecol. 15:939–947.PubMedCrossRefGoogle Scholar
  19. 19.
    Lefebvre, E. B., and McNellis, E. E. (1973): Photoinactivation of herpes simplex. J. A MA 224:1039.CrossRefGoogle Scholar
  20. 20.
    Kaufman, R. H., Gardner, H. L., Brown, D., et al. (1973): Herpes genitalis treated by photodynamic inactivation of virus. Am. J. Obstet. Gynecol. 117:1144–1146.PubMedGoogle Scholar
  21. 21.
    Jarratt, M. (1977): Photodynamic inactivation of herpes simplex virus. Photochem. Photobiol. 25:339–340.CrossRefGoogle Scholar
  22. 22.
    Randall, J. L., and Plotkin, S. A. (1974): Cytomegalovirus, a model for herpesvirus opportunism. In: Opportunistic Pathogens, edited by J. E. Prior and H. Friedman, pp. 261–280. University Park Press, Baltimore.Google Scholar
  23. 23.
    Naib, Z. M., Nahmias, A. J., and Josey, W. E. (1966): Cytology and histopathology of cervical herpes simplex infection. Cancer 19:1026–1031.PubMedCrossRefGoogle Scholar
  24. 24.
    Naib, Z. M., Nahmias, A. J., Josey, W. E., et al. (1969): Genital herpetic infection association with cervical dysplasia and carcinoma. Cancer 23:940–945.PubMedCrossRefGoogle Scholar
  25. 25.
    Rawls, W. E., Tompkins, W. A. F., and Melnick, J. L. (1969): The association of herpesvirus type 2 and carcinoma of the uterine cervix. Am. J. Epidemiol. 89:547–554.PubMedGoogle Scholar
  26. 26.
    Royston, I., and Aurelian, L. (1970): Immunofluorescent detection of herpesvirus antigens in exfoliated cells from human cervical carcinoma. Proc. Natl. Acad. Sci. U.S.A. 67:204–212.PubMedCrossRefGoogle Scholar
  27. 27.
    Aurelian, L., Strandberg, J. D., Meléndez, L. V., et al. (1971): Herpesvirus type 2 isolated from cervical tumor cells grown in tissue culture. Science 174:704–707.PubMedCrossRefGoogle Scholar
  28. 28.
    Frenkel, N., Roizman, B., Cassai, E., et al. (1972): A DNAfragmentofherpessimplex 2 and its transcription in human cervical cancer tissue. Proc. Natl. Acad. Sci. U.S.A. 69 3784–3789.PubMedCrossRefGoogle Scholar
  29. 29.
    Rapp, F. (1974): Herpesviruses and cancer. In: Advances in Cancer Research, edited by G. Klein and S. Weinhouse, pp. 265–302. Academic Press, NewYork.Google Scholar
  30. 30.
    Duff, R., and Rapp, F. (1971): Oncogenictransformationofhamstercellsafterexposureto herpes simplex virus type 2. Nature [New Biol.] 233:48–50.Google Scholar
  31. 31.
    Duff, R., and Rapp, F. (1971): Properties of hamster embryo fibroblasts transformed in vitro after exposure to ultraviolet-irradiated herpes simplex virus type 2. J. Virol. 8:469–477.PubMedGoogle Scholar
  32. 32.
    Duff, R., and Rapp, F. (1973): Oncogenic transformation of hamster embryo cells after exposure to inactivated herpes simplex virus type 1. J. Virol. 12:209–217.PubMedGoogle Scholar
  33. 33.
    Kutinova, L., Vonka, V., and Broucek, J. (1973): Increased oncogenicity and synthesis of herpesvirus antigens in hamster cells exposed to herpes simplex type-2 virus. J. Natl. Cancer Inst. 50:759–766.PubMedGoogle Scholar
  34. 34.
    Takahashi, M., and Yamanishi, K. (1974): Transformation of hamster embryo and human embryo cells by temperature sensitive mutants of herpes simplex virus type 2. Virology 61:306–311.PubMedCrossRefGoogle Scholar
  35. 35.
    Munyon, W., Kraiselburd, E., Davis, D., et al. (1971): Transfer of thymidine kinase to thymidine kinaseless L cells by infection with ultraviolet-irradiated herpes simplex virus. J. Virol. 7:813–820.PubMedGoogle Scholar
  36. 36.
    Duff, R., and Rapp, F. (1975): Quantitative assay for transformation of 3T3 cells by herpes simplex virus type 2. J. Virol. 15:490–496.PubMedGoogle Scholar
  37. 37.
    Macnab, J. C. M. (1974): Transformation of rat embryo cells by temperature sensitive mutants of herpes simplex virus. J. Gen. Virol. 24:143–153.PubMedCrossRefGoogle Scholar
  38. 38.
    Darai, G., and Münk, K. (1973): Human embryonic lung cells abortively infected with herpes virus hominis type 2 show some properties of cell transformation. Nature [New Biol.] 241:268–269.Google Scholar
  39. 39.
    Rapp, F., Li, J. L. H., and Jerkofsky, M. (1973): Transformation of mammalian cells by DNA-containing viruses following photodynamic inactivation. Virology 55:339–346.PubMedCrossRefGoogle Scholar
  40. 40.
    Li, J. L. H., Jerkofsky, M. A., and Rapp, F. (1975): Demonstration of oncogenic potential of mammalian cells transformed by DNA-containing viruses following photodynamic inactivation. Int. J. Cancer 15:190–202.PubMedCrossRefGoogle Scholar
  41. 41.
    Rapp, F., and Kemeny, B. (1977): Oncogenic potential of herpes simplex virus in mammalian cells following photodynamic inactivation. Photochem. Photobiol. 25 335–337.PubMedCrossRefGoogle Scholar
  42. 42.
    Seemayer, N. H., Hirai, K., and Defendi, V. (1973): Analysis of minimal functions of simian virus 40. I. Oncogenic transformation of Syrian hamster kidney cells in vitro by photodynamically inactivated SV40. Int. J. Cancer 12:524–531.PubMedCrossRefGoogle Scholar
  43. 43.
    Cutchins, E. C., and Dayhuff, T. R. (1962): Photoinactivation of measles virus. Virology 17:420–425.PubMedCrossRefGoogle Scholar
  44. 44.
    Wallis, C., and Melnick, J. L. (1964): Irreversible photosensitization of viruses. Virology 23:520–527.PubMedCrossRefGoogle Scholar
  45. 45.
    Crowther, D., and Melnick, J. L. (1961): The incorporation of neutral red and acridine orange into developing poliovirus particles making them photosensitive. Virology 14:11–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Schaffer, F. L. (1962): Binding of proflavine by and photoinactivation of poliovirus propagated in the presence of the dye. Virology 18:412–425.PubMedCrossRefGoogle Scholar
  47. 47.
    Wilson, J. N., and Cooper, P. D. (1962): Photodynamic demonstration of two stages in the growth of poliovirus. Virology 17:195–196.PubMedCrossRefGoogle Scholar
  48. 48.
    Mayor, H. D., and Melnick, J. L. (1962): Intracellularand extracellular reactions of viruses with vital dyes. Yale J. Biol. Med. 34:340–344.Google Scholar
  49. 49.
    Hiatt, C. W., Kaufman, E., Helprin, J. J., et al. (1960): Inactivation of viruses by the photodynamic action of toluidine blue. J. Immunol. 84:480–484.PubMedGoogle Scholar
  50. 50.
    Chang, T. W., and Weinstein, L. (1975): Photodynamic inactivation of Herpesvirus hominis by methylene blue Proe. Soc. Exp. Biol. Med. 148:291–293.Google Scholar
  51. 51.
    Spikes, J. D., and Livingston, R. (1969): The molecular biology of photodynamic action: Sensitized photoautoxidations in biological systems. Adv. Radiat. Biol. 3:29–121.Google Scholar
  52. 52.
    Pagano, J. S., and Huang, E. S. (1974): Vaccination against cytomegalovirus? Lancet 1:316–317.PubMedCrossRefGoogle Scholar
  53. 53.
    Wallis, C., Scheiris, C., and Melnick, J. L. (1967): Photodynamically inactivated vaccines prepared by growing viruses in cells containing neutral red. J. Immunol. 99:1134–1139.PubMedGoogle Scholar
  54. 54.
    Sastry, K. S., and Gordon, M. P. (1966): The photodynamic inactivation of tobacco mosaic virus and its ribonucleic acid by acridine orange. Biochim. Biophys. Acta 129:32–41.PubMedCrossRefGoogle Scholar
  55. 55.
    Freifelder, D., and Uretz, R. B. (1966): Mechanism of photoinactivation of coliphage T7 sensitized by acridine orange. Virology 30:97–103.PubMedCrossRefGoogle Scholar
  56. 56.
    Simon, M. I., and Van Vunakis, H. (1962): The photodynamic reaction of methylene blue with deoxyribonucleic acid. J. Mol. Biol. 4:488–499.PubMedCrossRefGoogle Scholar
  57. 57.
    Li, J. H., and Rapp, F. (1976): Oncogenic transformation of mammalian cells in vitro by proflavine-photoinactivated herpes simplex virus type 2. Cancer Letters 1:319–326.CrossRefGoogle Scholar
  58. 58.
    Helprin, J. J., and Hiatt, C. W. (1959): Photosensitization of T2 coliphage with toluidine blue. J. Bacteriol. 77:502–505.PubMedGoogle Scholar
  59. 59.
    Yamamoto, N. (1958): Photodynamic inactivation of bacteriophage and its inhibition. J. Bacteriol. 75:443–448.PubMedGoogle Scholar
  60. 60.
    Kucera, L. S., and Gusdon, J. P. (1976): Transformation of human embryonic fibroblasts by photodynamically inactivated herpes simplex virus, type 2 at supra-optimal temperature. J. Gen. Virol. 30:257–261.PubMedCrossRefGoogle Scholar
  61. 61.
    Butel, J. S., Tevethia, S. S., and Melnick, J. L. (1972): Oncogenicity and cell transformation by papovavirus SV40: The role of the viral genome. Adv. Cancer Res. 15:1–55.PubMedCrossRefGoogle Scholar
  62. 62.
    Sambrook, J. (1972): Transformation by polyoma virus and simian virus 40. Adv. Cancer Res. 16:141–180.PubMedCrossRefGoogle Scholar
  63. 63.
    Graham, F. L., van der Eb, A. J., and Heijneker, H. L. (1974): Size and location of the transforming region in human adenovirus type 5 DNA. Nature 251:687–691.PubMedCrossRefGoogle Scholar
  64. 64.
    Sharp, P. A., Pettersson, U., and Sambrook, J. (1974): Viral DNA in transformed cells. I. A study of the sequences of adenovirus 2 DNA in a line of transformed rat cells using specific fragments of the viral genome. J. Mol. Biol. 86:709–726.PubMedCrossRefGoogle Scholar
  65. 65.
    Collard, W., Thornton, H., and Green, M. (1973): Cells transformed by human herpesvirus type 2 transcribe virus-specific RNA sequences shared by herpesvirus types 1 and 2. Nature [New Biol]. 243:264–266.Google Scholar
  66. 66.
    Westmoreland, D., Watkins, J. F., and Rapp, F. (1974): Demonstration of a receptor for IgG in Syrian hamster cells transformed with herpes simplex virus. J. Gen. Virol. 25:167–170.PubMedCrossRefGoogle Scholar
  67. 67.
    Watkins, J. F. (1964): Adsorption of sensitized sheep erythrocytes to HeLa cells infected with herpes simplex virus. Nature 202:1364–1365.PubMedCrossRefGoogle Scholar
  68. 68.
    Watkins, J. F. (1965): The relationship of the herpes simplex haemadsorption phenomenon to the virus growth cycle. Virology 26:746–753.PubMedGoogle Scholar
  69. 69.
    Westmoreland, D., and Watkins, J. F. (1974): The IgG receptor induced by herpes simplex virus: Studies using radioiodinated IgG. J. Gen. Virol. 24:167–178.PubMedCrossRefGoogle Scholar
  70. 70.
    Aaronson, S. A., and Todaro, G. J. (1968): Basis for the acquisition of malignant potential by mouse cells cultivated in vitro. Science 162:1024–1026.Google Scholar
  71. 71.
    Jarrett, O., and MacPherson, I. (1968): The basis of the tumorigenicity of BH K 21 cells. Int. J. Cancer 3:654–662.PubMedCrossRefGoogle Scholar
  72. 72.
    Pollack, R. E., and Teebor, G. W. (1969): Relationship of contact inhibition to tumor transplantability, morphology and growth rate. Cancer Res. 29:1770–1772.PubMedGoogle Scholar
  73. 73.
    Marin, G., and MacPherson, I. (1969): Reversion in polyoma-transformed cells: Retransformation, induced antigens and tumorigenicity. J. Virol. 3:146–149.PubMedGoogle Scholar
  74. 74.
    Rapp, F., and Duff, R. (1973): Transformation of hamster embryo fibroblasts by herpes simplex viruses type 1 and type 2. Cancer Res. 33:1527–1534.PubMedGoogle Scholar
  75. 75.
    Verwoerd, D., and Rapp, F. (1978): Biochemical transformation of mouse cells by herpes simplex virus type 2: Enhancement by means of low-level photodynamie treatment. J. Virol. 26:200–202. PubMedGoogle Scholar
  76. 76.
    Varnell, E. D., and Kaufman, H. E. (1973): Photodynamie inactivation with proflavine: Quantitative comparison with iodo-deoxyuridine. Infect. Immun. 7:518–519.PubMedGoogle Scholar
  77. 77.
    Thomas, J. V., Dunlap, W. A., and Rich, A. M. (1973): Photodynamie inactivation in the treatment of experimental herpes simplex keratitis. Br. J. Ophthalmol. 57:336–338.PubMedCrossRefGoogle Scholar
  78. 78.
    Taylor, P. K., and Doherty, N. R. (1975): Comparison of the treatment of herpes genitalis in men with proflavine photoinactivation, idoxuridine ointment, and normal saline. Br. J. Vener. Dis. 51:125–129.PubMedGoogle Scholar
  79. 79.
    Roome, A. P. C. H., Tinkler, A. E., Hilton, A. L., et al. (1975): Neutral red with photoinactivation in the treatment of herpes genitalis. Br. J. Vener. Dis. 51:130–133.PubMedGoogle Scholar
  80. 80.
    Blue dye + light for herpes? Medical World News. 1974 (December 20):54–55.Google Scholar
  81. 81.
    O’Day, D. M., Jones, B. R., Poirier, R., et al. (1975): Proflavine photodynamie viral inactivation in herpes simplex keratitis. Am. J. Ophthalmol. 79:941–948.PubMedGoogle Scholar
  82. 82.
    Cusumano, C. L., and Monif, G. R. C. (1975): A word of caution concerning photodynamie inactivation therapy for herpes virus hominis infections. Obstet. Gynecol. 45:335–336.PubMedGoogle Scholar
  83. 83.
    Myers, M. G., Oxman, M. N., Clark, J. E., et al. (1975): Failure of neutral-red photodynamie inactivation in recurrent herpes simplex virus infections. N. Engl. J. Med. 293:945–949.PubMedCrossRefGoogle Scholar
  84. 84.
    Myers, M. G., Oxman, M. N., Clark, J. E., et al. (1976): Therapy of local herpesviral infections. Photodynamie inactivation in recurrent infections with herpes simplex virus. J. Infect. Dis. 133:A145-A150.PubMedCrossRefGoogle Scholar
  85. 85.
    Kaufman, R. H., Adam, E., Mirkovic, R., et al. (1978): Treatment of genital herpes simplex virus infection with photodynamie inactivation. Am. J. Obstet. Gynecol. 132:861–869.PubMedGoogle Scholar
  86. 86.
    Cramer, W. A., and Uretz, R. B. (1966): Acridine orange-sensitized photoinactivation of T4 bacteriophage. II. Genetic studies with photoinactivated phage. Virology 29:469–479.PubMedCrossRefGoogle Scholar
  87. 87.
    Benjamin, T. L. (1965): Relative target sizes for the inactivation of the transforming and reproductive abilities of polyoma virus. Proc. Natl. Acad. Sci. U.S.A. 54:121–124.PubMedCrossRefGoogle Scholar
  88. 88.
    Latarjet, R., Cramer, R., and Montagnier, L. (1967): Inactivation by UV-, X-, and γ- radiations, of the infecting and transforming capacities of polyoma virus. Virology 33:104–111.PubMedCrossRefGoogle Scholar
  89. 89.
    Aaronson, S. A. (1970): Effect of ultraviolet irradiation on the survival of simian virus 40 functions in human and mouse cells. J. Virol. 6:393–399.PubMedGoogle Scholar
  90. 90.
    Finklestein, J. Z., and McAllister, R. M. (1969): Ultraviolet inactivation of the cytocidal and transforming activities of human adenovirus type 1. J. Virol. 3:353–354.PubMedGoogle Scholar
  91. 91.
    Jensen, F., and Defendi, V. (1968): Transformation of African green monkey kidney cells by irradiated adenovirus 7-simian virus 40 hybrid. J. Virol. 2 73–177.PubMedGoogle Scholar
  92. 92.
    Casto, B. C. (1968): Effects of ultraviolet irradiation on the transforming and plaque-forming capacities of simian adenovirus SA7. J. Virol. 2:641–642.PubMedGoogle Scholar
  93. 93.
    Albrecht, T., and Rapp, F. (1973): Malignanttransformationofhamsterembryofibroblasts following exposure to ultraviolet-irradiated human cytomegalovirus. Virology 55:53–61.PubMedCrossRefGoogle Scholar
  94. 94.
    Toyoshima, K., Friis, R. R., and Vogt, P. K. (1970): The reproductive and cell-transforming capacities of avian sarcoma virus B77: Inactivation with UV light. Virology 42:163–170.PubMedCrossRefGoogle Scholar
  95. 95.
    Defendi, V., and Jensen, F. (1967): Oncogenicity by DNA tumor viruses: Enhancement after ultraviolet and cobalt-60 radiations. Science 157:703–705.PubMedCrossRefGoogle Scholar
  96. 96.
    Schell, K., Maryak, J., Young, J., et al. (1968): Adenovirus transformation of hamster embryo cells. II. Inoculation conditions. Arch. Gesamte Virusforsch. 24:342–351.PubMedCrossRefGoogle Scholar
  97. 97.
    Duff, R., Knight, P., and Rapp, F. (1972): Variation in oncogenic and transforming potential of PARA (defective SV40)-adenovirus 7. Virology 47:849–853.PubMedCrossRefGoogle Scholar
  98. 98.
    Seemayer, N. H., and Defendi, V. (1973): Analysis of minimal functions of simian virus 40. II. Enhancement of oncogenic transformation in vitro by UV irradiation. J. Virol. 12:1265–1271.PubMedGoogle Scholar
  99. 99.
    Kubitschek, H. E. (1966): Mutation without segregation in bacteria with reduced dark repair ability. Proc. Natl. Acad, Sci. U.S.A. 55:269–274.CrossRefGoogle Scholar
  100. 100.
    Haspel, M. V., and Rapp, F. (1975): Measles virus: An unwanted variant causing hydrocephalus. Science 187:450–451.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • F. Rapp
    • 1
  • J.-L. H. Li
    • 2
  1. 1.Department of Microbiology, The Milton S. Hershey Medical CenterThe Pennsylvania State University College of MedicineHersheyUSA
  2. 2.Department of MicrobiologyUniversity of Texas School of MedicineGalvestonUSA

Personalised recommendations