On Light, Colors, and the Origins of Spectroscopy

  • J. W. Longworth
Part of the Photobiology book series (PB)


The progress of science can be regarded as layers interconnected into an elaborate network:
  1. 1.

    Paradigms which summarize and predict data: the laws of science.

  2. 2.

    Experimental data: scientific research.

  3. 3.

    Technical devices and procedures: scientific instruments, methods, and materials.



Triplet State Ultraviolet Radiation Light Color Spectral Interval Photographic Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Westfall, R. S. (1980): Never at Rest: A biography of Isaac Newton. Cambridge Univ. Press, Cambridge.Google Scholar
  2. 1a.
    Alberti, L. B. (1435): Delia pittora. Firenze. [Translated by J. R. Spenser (1967); On Painting, Yale University Press, New Haven.]Google Scholar
  3. 2.
    Maurolico, F. (1553): Photismi de Lumine et Umbrae ad Perspectivam et Radiorum Incidentiam Facientes. Venice. [Translated by H. Crew. (1940): Photismi de Lumine of Maurolico. A Chapter in Late Mediaeval Optics. American Book Company, New York.]Google Scholar
  4. 3.
    Kepler, J. (1611): Dioptrice. Prague. (Reprinted 1962, Cambridge University Press, Cambridge.)Google Scholar
  5. 4.
    Dominis, M. A. (1611): De Radüs Visus et Lueis in Vitris Perspeetivis et Iride Traetatus. Venice. [Summary in C. B. Boyer. (1959): The Rainbow, from Myth to Mathematics. Yoseloff Press. New York.]Google Scholar
  6. 5.
    Descartes, R. (1637): Discours de la methode pour bien conduire sa raison et chercher la verite dans Ies sciences. Appendix I: La Dioptrique. Appendix III: Les Meteores. Paris. [Translated by P. J. Olscamp. (1965): Discourse on Method, Optics, Geometry and Meteorology. Indiana Univer. Press. Indianapolis.]Google Scholar
  7. 6.
    Newton, I. (1672): A new theory about light and colours. Phil. Trans. R. Soc. Lond. 6:3075–3087.Google Scholar
  8. 7.
    Herschel, W. (1800): Experiments on the refrangibility of invisible rays of the sun. Phil. Trans. R. Soc. Lond. 90:255–283, 284–292, 293–326.CrossRefGoogle Scholar
  9. 8.
    Ritter, J. W. (1801): Physisch-chemische Abhandlungen, Vol. 2. Leipzig.Google Scholar
  10. 9.
    Scheele, C. W. (1779): Untersuchungdes Flusspathes und dessen Saure. Crell’s Chem. J. 2:192–203.Google Scholar
  11. 10.
    Grimaldi, F. M. (1664): Physico-Methesis de Lumine, Coloribus et iride Bologna. [The Physics of Light, Colours and the Rainbow. Dawson Publications. Hamden CT.]Google Scholar
  12. 11.
    Boyle, R. (1664): Experimentsand Considerations Touching Colours. London. (Reprinted 1964, Johnson Reproductions, New York.)Google Scholar
  13. 12.
    Hooke, R. (1665): Micrographia, or Some Physiological Descriptions of Minute Bodies Made in Magnifying Glasses. London. (Reprinted 1961, Dover Press, New York.)Google Scholar
  14. 13.
    Newton, I. (1675): An examination of colour phenomena in thin films and an Hypothesesis Explaining the Properties of Light. Phil. Trans. R. Soc. Lond. 9:515–533. [Refs. 6 & 13 reproduced in I. B. Cohen: (1978). Isaac Newton’s Papers and Letters on Natural Philosophy. 2nd ed. Harvard University Press. Cambridge.]Google Scholar
  15. 14.
    Young, T. (1802): On the theory of light and colours. Phil. Trans. R. Soc. Lond. 92:12–48.CrossRefGoogle Scholar
  16. 15.
    Young, T. (1802): An account of some cases of the production of colours not hitherto described. Phil. Trans. R. Soc. Lond. 92:387–397.CrossRefGoogle Scholar
  17. 16.
    Newton, I. (1730): Opticks: A Treatise on the Reflections, Refractions, Inflections and Colours of Light. 4th ed. London. (1st ed., 1704.) (Reprinted 1952. Dover Press. New York.)Google Scholar
  18. 17.
    Rittenhouse, D. (1786):An Optical Problem. Trans. Am. Phil. Soc. Philadelphia. 2:202–206. [Reproduced in T. D. Cope. (1932): Rittenhouse diffraction grating. J. Franklin Inst. 214:99–104.]Google Scholar
  19. 18.
    Fraunhofer, J. (1821): Formation of spectrum upon diffraction from a framework of wire. Denkschr. König Akad. Wiss., München 8:1–76. [Refs. 18, 19, & 21 Reproduced in J. S. Ames (1898): Prismatic and Diffraction Spectra. Harper, New York.]Google Scholar
  20. 19.
    Fraunhofer, J. (1823): Kurzer Bericht von den Resultaten neuerer Versuche über die Gesetze des Lichtes und die Theorie derselben. Ann. Physik 74:337–378.CrossRefGoogle Scholar
  21. 20.
    Wollaston, W. H. (1802): A Method of examining refractive and dispersive powers by prismatic reflection. Phil. Trans. R. Soc. Lond. 92:365–380.CrossRefGoogle Scholar
  22. 21.
    Fraunhofer, J. (1817): Bestimmung des Brechungs- und Forbenzerstreuungs-Vermögens Verschiedener Glasarten, in Bezug auf die Vervollkommnung achromakscher Fernröhre. Ann. Physik 56:264–313.CrossRefGoogle Scholar
  23. 22.
    Biringuccio, V. (1540): De Ia pirotechnia. Venice. Trans. 1966. MIT Press. Cambridge.Google Scholar
  24. 23.
    Melvill, T. (1752): Physical and Literary Essays. Edinburgh. [Reprinted in J. R. Astron. Soc. Canada 8:231 (1914).]Google Scholar
  25. 24.
    Galvani, L. (1791): De viribus electricitatis in motu musculori commentarius. Bologna. [Translated by R. M. Green. (1980): Commentary on the Effect of Electricity on Muscular Motion. Williams and Wilkins. Baltimore.]; A. Volta (1793): Account of some discoveries made by Galvani. Phil. Trans. R. Soc., Lond. 90:403–431.Google Scholar
  26. 25.
    Kirchhoff, G. R. (1860): Ueberdie Franunhofer’schen Linien. Ann. Physik 109:148–150.CrossRefGoogle Scholar
  27. 26.
    Kirchhoff, G. R. (1860): Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht. Ann. Physik 109:275–301.CrossRefGoogle Scholar
  28. 27.
    Kirchhoff, G. R., and Bunsen, R. W. (1860): Chemische Analyse durch Spectral Beobachtung, I. Ann. Physik 110:161–189.CrossRefGoogle Scholar
  29. 28.
    Kirchhoff, G. R., and Bunsen, R. W. (1861): Chemische Analyse durch Spectral Beobachtung, II. Ann. Physik 113:338–381.Google Scholar
  30. 29.
    Brewster, D. (1833): On colours of natural bodies. Trans. R. Soc. Edinburgh 12:538–545.Google Scholar
  31. 30.
    Miller, W. A. (1862): Photographic detection of the ultraviolet emission of characteristic spectra from metal sparks. Phil. Trans. R. Soc. Lond. 152:861–887.CrossRefGoogle Scholar
  32. 31.
    Stokes, G. G. (1862): On the long spectrum of the electric light. Phil. Trans. R. Soc. Lond. 152:599–619.CrossRefGoogle Scholar
  33. 32.
    Stokes, G. G. (1864): On the application of the optical properties to detection and discrimination of organic substances. J. Chem. Soc. 22:303–318.Google Scholar
  34. 33.
    Hartley, W. N. (1882): Note on certain photographs of the ultra-violet spectra of elementary bodies. J. Chem. Soc. 41:84–90.CrossRefGoogle Scholar
  35. 34.
    Hartley, W. N. (1884): Researches on spectrum photography in relation to new methods of quantitative chemical analysis. Phil. Trans. R. Soc. Lond. 175:49–62.CrossRefGoogle Scholar
  36. 35.
    Kircher, A. (1646): Ars Magna Lucis et Umbrae, in mundo-Rome.Google Scholar
  37. 36.
    Cellini, B. (1568): Due trattati dell’Orificera. Firenze. [Translated by C. R. Ashbee. (1966): Dover Press. New York.]Google Scholar
  38. 37.
    Beccari, J. B. (1745): De adamante alüsque rebus in phosphorium numerum referendis. Comm. Accad. Bonon. 2(1):274–303.Google Scholar
  39. 38.
    Beccari, J. B. (1746): De quam plurinis phosphoris nunc primum detectis. Comm. Accad. Bonon. 2(2):136–179.Google Scholar
  40. 39.
    Anderson, R. R., Levine, M. J., and Parrish, J. A. (1980): Selective modification of the optical properties of psoriatic vs. normal skin. In: 8th International Congress on Photobiology, Strasbourg. Book of Abstracts, p. 152.Google Scholar
  41. 40.
    Becquerel, E. (1858): Recherches sur divers effects lumineux. Memoires I, II and III. Action de la lumiere sur Ies corps. C R. Acad. Sci. (Paris) 45:815–819; 46:969–975.Google Scholar
  42. 41.
    Becquerel, E. (1861): Recherches sur divers effets lumineux. IV Memoire. Intensité de la lumiere emise. Ann. Chim. Phys. 62:5–100.Google Scholar
  43. 42.
    Wiedemann, E. (1888): Über Fluorescenz und Phosphorescenz. Ann. Physik 34:446–449.CrossRefGoogle Scholar
  44. 43.
    Dewar, J. (1894): Phosphorescence and photographic action at the temperature of boiling liquid air. Chem. News 70:252–253.Google Scholar
  45. 44.
    Wiedemann, E. (1889): Zur Mechanik der Leuchtens. Ann. Physik 37:177–248.CrossRefGoogle Scholar
  46. 45.
    Wiedemann, E., and Schmidt, G. C. (1895): Über Liminescenz. Ann. Physik 54:604–625.Google Scholar
  47. 46.
    Wiedemann, E., and Schmidt, G. C. (1895): Über Luminescenz von festen Korpern und festen Losungen. Ann. Physik 56:18–26.CrossRefGoogle Scholar
  48. 47.
    Wiedemann, E., and Schmidt, G. C. (1895): Über Lichtemission organischer Substanzen im gasformingen, flussigen und festen Zusrand. Ann. Physik 56:201–254.CrossRefGoogle Scholar
  49. 48.
    Vavilov, S. I., and Levshin, V. L. (1926): Die Beziehung zwischen Fluoreszenz und Phosphoreszenz fester und flüssiger Medien. Z. Physik 35:920–936.CrossRefGoogle Scholar
  50. 49.
    Vavilov, S. I., and Levshin, V. L. (1927): Die Beziehung zwischen Fluoreszenz und Phosphoreszenz fester und flüssiger Medien. Z. Physik 44:539.CrossRefGoogle Scholar
  51. 50.
    Jablonski, A. (1935): Über der Mechanismus der Photolumineszenz von Farbstof-fphosphoren. Z. Physik 94:38–46.CrossRefGoogle Scholar
  52. 51.
    Goldstein, E. (1904): Über die Emissionspektren Aromatischer Verbinduggen. Ver. Dtsch. Phys. Ges. 6:156–170; Discontinuous luminous spectra from solid organic bodies. Ver. Dtsch. Phys. Ges. 6:185–190.Google Scholar
  53. 52.
    Goldstein, E. (1911): Über die Untersuchung der Emissionsspektren fester aromatischer Substanzen mit den ultraviolet Filter. Phys. Z. 12:614–620.Google Scholar
  54. 53.
    Kowalski, J. (1910): La phosphorescence progressive a basse temperature. C. R. Acad. Sci. (Paris) 151:810–812.Google Scholar
  55. 54.
    Kowalski, J., and Dzierzbicki, J. (1910): Le spectre de phosphorescence progressive des composes organique a basse temperature. C. R. Acad. Sci. (Paris) 151:943–945.Google Scholar
  56. 55.
    Kowalski, J., and Dzierzbicki, J. (1911): Influence des groupements fontionels sur Ie spectre de phosphorescence progressive. C. R. Acad. Sci. (Paris) 152:83–85.Google Scholar
  57. 56.
    Lewis, G. N., Lipkin, D., and Magie, T. T. (1941): Reversible photochemical processes in rigid media. A study of the phosphorescent state. J. Am. Chem. Soc. 63:3005–3018.CrossRefGoogle Scholar
  58. 57.
    Terenin, A. (1943): Photochemical processes in aromatic compounds. Acta Physicochem. (USSR) 18:210–241.Google Scholar
  59. 58.
    Lewis, G. N., and Calvin, M. (1945): Paramagnetism of the phosphorescent state. J. Am. Chem. Soc. 67:1232–1233.CrossRefGoogle Scholar
  60. 59.
    Lewis, G. N., Calvin, M., and Kasha, M. (1949): Photomagnetism. Determination of the paramagnetic susceptibility of a dye in its phosphorescent state. J. Chem. Phys. 17:804–812.CrossRefGoogle Scholar
  61. 60.
    Evans, D. F. (1955): Photomagnetism of triplet states of organic molecules. Nature 176:777–778.CrossRefGoogle Scholar
  62. Beccari, G. B. (1753): Dell Electricismo Artifieale e Naturale. Turin. [A Treatise upon Electricity. London (1776).]Google Scholar
  63. 62.
    Körtum, K. (1794): Resultate einer Reihe electrische phosphorische Eigenschaft verscheidner Körper zu beobachten. Voigt’s Mag. Neueste an Physik Natur 9:1–44.Google Scholar
  64. 63.
    Dessaignes, J. P. (1810): Me’moire sur Ies phosphorescence. J. Physique 70:109–128.Google Scholar
  65. 64.
    Heinrich, J. (1812): Traite’de la phosphorescence des corps. J. Physique 74:307–315.Google Scholar
  66. 65.
    Wheatstone, C. (1836): On the prismatic decomposition of the electric light. Phil. Mag. 7:299–300.Google Scholar
  67. 66.
    Becquerel, E. (1839): Recherches sur Ie rayonnement calorifique de Fétincelle électrique. C. R. Aead. Sci. (Paris) 8:334–337, 493–497; (1843): Des effects produits sur Ies corps par Ies rayons solarires. Ann. Chem. Phys. 9:257–322.Google Scholar
  68. 67.
    Porter, G., and Windsor, M. W. (1954): Triplet states in solution. J. Chem. Phys. 21:2088.CrossRefGoogle Scholar
  69. 68.
    Monardes, N. (1574): La Historia Medicinal de las Cosas que se Traen de Nuestras Indians Occidentales que Sirvem al Usos de Medicina. [Translated by J. Frampton, Joyful Newes out of the Newe Founde Worlde. London (1577). Reprinted 1925, Knopf, New York.]Google Scholar
  70. 69.
    Herschel, J. F. W. (1845): On a case of superficial colour presented by a homogeneous liquid, internally colourless. Phil. Trans. R. Soc. Lond. 135:143–145.CrossRefGoogle Scholar
  71. 70.
    Herschel, J. F. W. (1845): On the epipolic dispersion of light. Phil. Trans. R. Soc. Lond. 135:147–153.CrossRefGoogle Scholar
  72. 71.
    Stokes, G. G. (1852): On the change of refrangibility of light, I. Phil. Trans. R. Soc. Lond. 142:463–562; A. J. Angstrom (1855) Optische Untersuchungen. Ann. Physik. 94:141–164.CrossRefGoogle Scholar
  73. 72.
    Stokes, G. G. (1853): Onthechange of refrangibility of light, II. Phil. Trans. R. Soc. Lond. 143:385–396.CrossRefGoogle Scholar
  74. 73.
    Mascart, E. (1869): Sur Ies spectres ultra-violet. C. R. Acad. Sci. (Paris) 69:337–338.Google Scholar
  75. 74.
    Stoney, G. J. (1870): On the cause of the interrupted spectra of gases. Phil. Mag. 41:291–296.Google Scholar
  76. 75.
    Soret, J. L. (1871): On harmonic ratios in spectra. Phil. Mag. 42:464–465.Google Scholar
  77. 76.
    Alter, D. (1854): On certain physical properties of light of the electric spark within certain gases, as seen by a prism. Am. J. Sci. 18:55–57.Google Scholar
  78. 77.
    Alter, D. (1855): On certain physical properties of light of the electric spark within certain gases, as seen by a prism. Am. J. Sci. 19:213–214.Google Scholar
  79. 78.
    Balmer, J. J. (1885): Notiz über die Spectrallinien des Wasserstoff. Ann. Physik 25:80–87.CrossRefGoogle Scholar
  80. 79.
    Bohr, N. (1913): Constitution of atoms and molecules, I and II. Phil. Mag. 26:1–25, 476–502.Google Scholar
  81. 80.
    Davy, H. (1822): On the electrical phenomena exhibited in vacuo. Phil. Trans. R. Soc. Lond. 112:64–75.CrossRefGoogle Scholar
  82. 81.
    Bouguer, P. (1729): Essai d’Optique sur la Graduation de la Lumiere. Le Havre.Google Scholar
  83. 82.
    Bouguer, P. (1760): Traite D’Optique sur la Graduation de la Lumiere. Paris. (Opus posthum.) [Translated by W. E. K. Middleton. (1961): University of Toronto Press. Toronto.]Google Scholar
  84. 83.
    Lambert, J. H. (1760):Photometria Siva de Mensura et Gradibus Luminis, Colorum et Umbrae. Augsberg.Google Scholar
  85. 84.
    Beer, A. (1852): Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Ann. Physik 86:78–88.CrossRefGoogle Scholar
  86. 85.
    Bunsen, R. W., and Roscoe, H. E. (1857): Photo-chemical researchers. Part 3, Optical and chemical extinction of the chemical rays. Ann. Physik 102:235–263.CrossRefGoogle Scholar
  87. 86.
    Hurter, F., and Driffield, V. C. (1890): Photo-chemical investigations and a new method of determinations of the sensitiveness of photographic plates. J. Soc. Chem. Ind. (Lond.) 9:455–469.CrossRefGoogle Scholar
  88. 87.
    Sumpner, W. E. (1892): Proc. R. Soc. 12:10.Google Scholar
  89. 88.
    Ulbricht, R. (1900): Photometer for mean spherical candle-power. Elektrotech. Z. 21:595–597.Google Scholar
  90. 89.
    Taylor, A. H.(1920): Measurementofabsolutereflectingpowers./. Opt. Soc. Am. 4:9–23.CrossRefGoogle Scholar
  91. 90.
    Taylor, A. H. (1931): Measurement of reflection factors in the ultraviolet. J. Opt. Soc. Am. 21:776–784.CrossRefGoogle Scholar
  92. 91.
    Kubelka, P., and Münk, F. (1931): Reflection characteristics of paints. Z. Tech. Physik 12:593–601.Google Scholar
  93. 92.
    Kubelka, P. (1948): New contributions to the optics of intensely light scattering materials. J. Opt. Soc. Am. 38:448–457.PubMedCrossRefGoogle Scholar
  94. 93.
    Mie, G. (1908): Contributions to the optics of turbid media, especially colloidal metal solutions. Ann. Physik 25:377–445.CrossRefGoogle Scholar
  95. 94.
    Latimer, P. (1959): Influence of selective light scattering on measurements of absorption spectra of Chlorella. Plant Physiol. 34:193–199.PubMedCrossRefGoogle Scholar
  96. 95.
    Bryant, F. D., Secher, B. A., and Latimer, P. (1969): Absolute optical cross sections of cells and chloroplasts: Total scattering and absorption. Arch. Biochem. Biophys. 135:97–108.PubMedCrossRefGoogle Scholar
  97. 96.
    Theissing, H. H. (1950): Macrocontribution of light scattered by dispersions of spherical dielectric particles. J. Opt. Soc. Am. 40:232–243.CrossRefGoogle Scholar
  98. 97.
    Butler, W. L. (1962): Absorption of light by turbid materials. J. Opt. Soc. Am. 52:292–299.CrossRefGoogle Scholar
  99. 98.
    Shibata, K. (1957): Simple absolute method for measuring diffuse reflectance spectra. J. Opt. Soc. Am. 47:172–175.CrossRefGoogle Scholar
  100. 99.
    Amesz, J., Duysens, L. N. M., and Brandt, D. C. (1961): Methods for measuring and correcting absorption spectrum of scattering suspensions. J. Theor. Biol. 1:59–74.PubMedCrossRefGoogle Scholar
  101. 100.
    Dorman, B. P., Hearst, J. E., and Maestre, M. F. (1973): UV absorption and circular dichroism measurements on light scattering biological specimens; fluorescent cell and related large-angle light detection techniques. Methods Enzymol 27:767–796.PubMedCrossRefGoogle Scholar
  102. 101.
    Duysens, L. N. M. (1956): The flattening of absorption spectrum of suspensions, as compared to that of solutions. Biochem. Biophys. Acta 19:1–12.PubMedCrossRefGoogle Scholar
  103. 102.
    Felder, B. (1964): The dependence of light absorption on particle size in heterogeneous systems. I. Theoretical considerations. Helv. Chim. Acta 47:488–497.CrossRefGoogle Scholar
  104. 103.
    Grotthus, (1815): Über einen neuen Lightsauger nebst einigen allegemeinen Betrachtungen über die Phosphoreszenz und die Farben. J. Chem. Physik 14:133–192.Google Scholar
  105. 104.
    Draper, J. W. (1841): On some analogies between phenomena of chemical rays and those of radiant heat. Phil. Mag. 19:195–210.Google Scholar
  106. 105.
    Stark, J. (1908): Further remarks upon thermal and chemical absorption in the band spectrum. Z. Physik 9:889–894. See also Ann. Phys. 38:407–430 (1912).Google Scholar
  107. 106.
    Einstein, A. (1912): Thermodynamic foundation of the law of photochemical equivalents. Ann. Physik 37:832–838.CrossRefGoogle Scholar
  108. 107.
    Bunsen, R., and Roscoe, H. E. (1859): The laws of photochemical action. Phil. Trans. R. Soc. Lond. 149:876–926.Google Scholar
  109. 108.
    Zanotti, F. M. (1748): De lapide bononiensi. Comm. Accad. Bonon. 1:181–205.Google Scholar
  110. 109.
    Ritter, J. W. (1803): Bemerkungen zu vorstehender Abhandlung der Herrn Carl Wunch. J. Chem. Physik 6:633–719.Google Scholar
  111. 100.
    Zucchi, N. (1652): Optica Philosophica Experimentis et Ratione a Fundamentis Constituta. Lugduni.Google Scholar
  112. 111.
    Nichols, E. L., and Merritt, E. (1910): Distribution of energy in fluorescence spectra. Phys Rev. 30:328–346.Google Scholar
  113. 112.
    Vavilov, S. I. (1922): The dependence of the intensity of fluorescence of dyes on the wavelength of exciting light. Phil. Mag. 43:307–320.Google Scholar
  114. 113.
    Warburg, E. (1920): Quanten theoretische Grundlagen der Photochemie. Z. Elektrochem. 26:54–59.Google Scholar
  115. 114.
    Lenard, P. (1910): Über Lichtemission und deren Erregung. Ann. Physik 31:641–685.CrossRefGoogle Scholar
  116. 115.
    Melloni, M. (1833): Memoire sur la transmission libre de la chaleur rayonnante par differents corps solides et liquides. Ann. Chim. Phys. 55:5–73. [See also E. S. Barr (1962): Infra Red Pioneers. II. Melloni. Infrared Physics 2:67–73.Google Scholar
  117. 116.
    Goethe, J. W. (1810):Zur Farbenlehre. Weimar. [Translation MIT Press (1970).]Google Scholar
  118. 117.
    Henri, V. (1922): Etude des spectres d’absorption et de fluorescence du benzene. J. Physique 3:181–214.Google Scholar
  119. 118.
    Nichols, E. L., and Merritt, E. (1910): The specific exciting power of different wavelengths of the visible spectrum in the case of eosin and resorufin. Phys. Rev. 32:381–387.Google Scholar
  120. 119.
    Vavilov, S. I.(1922): Die Fluoreszenz ausbeute von Farbstofflösungen. Z. Physik 22:266–272.Google Scholar
  121. 120.
    Anderson, W. L., and Bird, L. F. (1928): The measurement of ultraviolet quanta by fluorescent photometry. Phys. Rev. 32:293–297.CrossRefGoogle Scholar
  122. 121.
    Bowen, E. J. (1936): Heterochromatic photometry of the ultraviolet region. Proc. R. Soc. 154:349–353.CrossRefGoogle Scholar
  123. 122.
    Taylor, D. G., and Demas, J. N. (1979): Light intensity measurements. 1. Large area bolometers with microwatt sensitivities and absolute calibration of rhodamine B counter. Anal. Chem. 51:712–717; 2. Luminescent quantum counter comparator and evaluation of some luminescent quantum counters. Anal. Chem. 51:717–722.CrossRefGoogle Scholar
  124. 123.
    Mandel, K., Pearson, T. D. L., and Demas, J. N. (1980): Luminescent quantum counters based on organic dyes in polymer matrices. Anal. Chem. 52:2184–2189.CrossRefGoogle Scholar
  125. 124.
    Mielenz, K. D., Mavrodineanu, R., and Cehelnik, E. D. (1975): Efficientaveragingspheres for visible and ultraviolet wavelengths. Applied Optics 14:1940–1947.PubMedCrossRefGoogle Scholar
  126. 125.
    Teale, F. W. J., and Weber, G. (1957): Ultraviolet fluorescence of the aromatic amino acids. Biochem. J. 65:476–482.PubMedGoogle Scholar
  127. 126.
    Christensen, R. L., and Ames, I. (1961): Absolute calibration of a light detector. J. Opt. Soc. Am. 51:224–236.CrossRefGoogle Scholar
  128. 127.
    Perkampus, H. H., Körtum, K., and Bruns, H. (1969): Calibration of fluorescence apparatus. Appl. Spectrosc. 23:105–110.CrossRefGoogle Scholar
  129. 128.
    Lippert, E., Nagele, W., Scibold-Blankenstein, I., et al. (1959): Measurement of fluorescence spectra with spectrophotometers and comparison standards. Z. Anal. Chem. 170:1–18.CrossRefGoogle Scholar
  130. 129.
    Bartholin, E. (1670): Experimenta Crystalli Islandici Disdiaclastici Quibus Mira et Insolita Refractio Detegetur. Copenhagen.Google Scholar
  131. 130.
    Huygens, C. (1690): Traite’de la lumiere, avec un discours de la cause de lapesanteur. Paris. (Translated 1966. Dawson Press. Hamden, CT.)Google Scholar
  132. 131.
    Newton, I. (1704): Opticks (Question 29, Book III). London.Google Scholar
  133. 132.
    Malus, É.-L. (1809): Sur unepropriétéde Ia lumière réfléchie. M. Soc. Arceuil 2:143–158.Google Scholar
  134. 133.
    Malus, É.-L. (1809): Sur une propriéte’des forces repulsives qui agissent sur Ia lumière. Mem. Soc. Arceuil 2:254–267.Google Scholar
  135. 134.
    Malus, É.-L. (1810): Memoire sur nouveaux phénomènes d’optique. Mem. Inst. France 11:105–111.Google Scholar
  136. 135.
    Malus, E.-L. (1810): Memoire sur Ies phénomenès qui accompagnent la reflection et la refraction de la lumière. Mem. Inst. France 11:112–120.Google Scholar
  137. 136.
    Arago, D. F. J. (1811): Sur une modification remarquable qu’eprouvent Ies rayons lumineaux dans Ieur passage a travers certain corps diaphanes, et sur quelques autres nouveaux phénomenes d’optique. Mem. Inst. France 12:93–134.Google Scholar
  138. 137.
    Brewster, D. (1815): On the laws which regulate the polarization of light by reflection from transparent bodies. Phil. Trans. R. Soc. Lond. 105:125–159.CrossRefGoogle Scholar
  139. 138.
    Fresnel, A. J. (1816): Sur la diffraction de la lumière, ou Ton examine particulaièrement Ie phénomène des franges colorées que présentent Ies ombres dans corps éclairés par un point lumineux. Ann. Chim. Phys. 1:239–281.Google Scholar
  140. 139.
    Arago, D. F. J., and Fresnel, A. J. (1819): Memoire sur Taction que Ies rayons polarises exercent Ies uns sur Ies autres. Ann. Chim. Phys. 10:288–305.Google Scholar
  141. 140.
    Young, T. (1817): Chromatics, In: Supplement to Encyclopaedia Britannica, 6th ed. (1824). London.Google Scholar
  142. 141.
    Fresnel, A. J. (1825): Memoire sur la double refraction que Ies rayons lumineux e’prouvement en traversant Ies aiguilles de cristal de röche suivant des directions paralleles a l’axe. Ann. Chim. Phys. 28:263–279.Google Scholar
  143. 142.
    Nicol, W. (1828): On a method of so far increasing the divergence of two rays of calcareousspar that only one image may be seen at a time. Edinb. N. Phil. J. 6:83–84.Google Scholar
  144. 143.
    Rochon, A. M. (1811): Experiences sur la formation de la double image, et sur sa disparition dans Ie spath d’Islande et dans Ie cristal de röche, appliquées au perfectionnement de tous Ies micromètres composes de ces deux substances. J. Physique 72:319–332.Google Scholar
  145. 144.
    Wallaston, W. H. (1820): On the methods of cutting rock crystals for micrometers. Phil. Trans. R. Soc. Lond 110:126–131.CrossRefGoogle Scholar
  146. 145.
    Thomson, W. (Lord Kelvin) (1904): Baltimore Lectures on Physics (1884). Cambridge University Press, Cambridge.Google Scholar
  147. 146.
    Weigert, F. (1922): Über polarisierte Fluoreszenz. Phys. Z. 23:232–233.Google Scholar
  148. 147.
    Weigert, F., and Kappler, G. (1924): Polarisierte Fluoreszenz im Farbstofflösungen, I. Z. Physik 25:99–117.CrossRefGoogle Scholar
  149. 148.
    Weigert, F., and Käppier, G. (1925): Polarisierte Fluoreszenzim Farbstofflösungen, II. Z. Physik 33:801–802.CrossRefGoogle Scholar
  150. 149.
    Vavilov, S. I., and Levshin, V. L. (1922): Zur Frage über polarisierte Fluoreszenz von Farbstofflosüngen, I. Phys. Z. 23:173–176.Google Scholar
  151. 150.
    Vavilov, S. I., and Levshin, V. L. (1923): Zur Frage über polarisierte Fluoreszenz von Farbstofflösungen, II, Z. Physik 16:135–154.CrossRefGoogle Scholar
  152. 151.
    Levshin, V. L. (1924): Über polarisiertes Fluoreszenzlicht von Farbstofflösungen. Z. Physik 26:274–284.CrossRefGoogle Scholar
  153. 152.
    Levshin, V. L. (1925): Polarisierte Fluoreszenz und phosphoreszenz dur Farbstofflösungen. Z. Physik 32:307–326.CrossRefGoogle Scholar
  154. 153.
    Gaviola, E. (1926): Die Abklingungszeiten der Fluoreszenz von Farbstofflösungen. Z. Physik 35:748–756.CrossRefGoogle Scholar
  155. 154.
    Perrin, F. (1926): Polarisation de Ia lumière de fluorescence. Vie moyenne des mole’cules dans rétat excite. J. Physique 7:390–401.Google Scholar
  156. 155.
    Perrin, F. (1929): Fluorescence des solutions. Induction mole’culaire, polarisation et durée d’emission, et photochemie. Ann. Physique 12:169–275.Google Scholar
  157. 156.
    Mitra, S. M. (1934): Über den Einfluss des KIaufdie PolarizationderFluoreszenzvonim Lösung befindlichen Farbstoffen. Z. Physik 92:61–63.CrossRefGoogle Scholar
  158. 157.
    Kerr, J. (1875): A new relation between electricity and light; dielectrified media birefringence. Phil. Mag. 50:337–348.Google Scholar
  159. 158.
    Abraham, H., and Lemoine, J. (1899): Kerr phenomena. C. R. Acad. Sci. (Paris) 129:206–208.Google Scholar
  160. 159.
    Wood, R. W. (1921): The time interval between absorption and emission of light in fluorescence. Proc. R. Soc. a99:362–371.Google Scholar
  161. 160.
    Gottling, P. F. (1923): Determination of the time between excitation and emission for certain fluorescent solids. Barium cyanoplatinate and rhodamine. Phys. Rev. 22:566–573.CrossRefGoogle Scholar
  162. 161.
    Hertz, H. R. (1887): Über einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Ann. Physik 31:983–1000.CrossRefGoogle Scholar
  163. 162.
    Thomson, J. J. (1899): On the masses of ions in gases at low pressures. Phil. Mag. 48:547–567.Google Scholar
  164. 163.
    Lenard, P. (1900): The production of cathode rays by ultraviolet light. Ann. Physik 2:359–375.CrossRefGoogle Scholar
  165. 164.
    Lenard, P. (1902): Light electric effect. Ann. Physik 8:149–198.CrossRefGoogle Scholar
  166. 165.
    Einstein, A. (1905): Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristisches Gesichtspunkt. Ann. Physik 17:132–148.CrossRefGoogle Scholar
  167. 166.
    Einstein, A. (1906): Zur Theorie die Lichterzeugung und Lichtabsorption. Ann. Physik 20:199–206.CrossRefGoogle Scholar
  168. 167.
    Ladenberg, E. (1908): On the initial velocity and number of photoelectric electrons produced by light of different wavelengths. Phys. Z. 8:590–594.Google Scholar
  169. 168.
    Richardson, O. W., and Compton, K. T. (1912): The photoelectric effect. Phys. Rev. 34:393–396.Google Scholar
  170. 169.
    Farnsworth, P. T. (1934): An electron multiplier. (A new type of cold-cathode tube of high current amplifying ability marks another step toward the solution of television problems.) Electronics 7:242–243.Google Scholar
  171. 170.
    Rajchman, J. A., and Snyder, R. L. (1940): An electrically-focused multiplier phototube. Electronics 13:20–23.Google Scholar
  172. 171.
    Newton, E. Harvey (1957): A History of Luminescence. The American Philosophical Society, Philadelphia.Google Scholar
  173. 172.
    Pringsheim, Peter (1949): Fluorescence and Phosphorescence. Interscience, John Wiley, New York.Google Scholar
  174. 173.
    Wood, Robert (1934): Physical Optics. Macmillan, New York.Google Scholar
  175. 174.
    Deminguez, X. A., Franco, F., and Diaz Viveros, Y. (1978): Rev. Latinam. Quirn. 9: 209.Google Scholar
  176. 175.
    Haüy, Renè-Just (1801): Traitè de Minerologie. Paris.Google Scholar
  177. 176.
    Lennard, P. (1935):German Physics. Berlin.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • J. W. Longworth
    • 1
  1. 1.Biology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations