Advertisement

Laser Applications in Medicine

  • D. E. Rounds
Part of the Photobiology book series (PB)

Abstract

Like conventional light sources, lasers emit photons which can interact with biologic molecules to produce photochemical reactions. However, lasers have unique properties that are not found in conventional light sources. These properties include monochromaticity, coherence, and high intensity.

Keywords

Diabetic Retinopathy Laser Treatment Retinal Vessel Laser Application Vitreous Humor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rounds, D. E. (1965): Effects of laser radiation on cell cultures. Fed. Proc. Suppl. 13: S116–S121.Google Scholar
  2. 2.
    Rounds, D. E., Olson, R. S., and Johnson, F. M. (1965): The laser as a potential tool for cell research. J. Cell. Biol. 27:191–197.PubMedCrossRefGoogle Scholar
  3. 3.
    Brown, T. E., and Rockwell, R. J., Jr. (1967): The argon laser: its effects in vascular and neural tissue. In: Record of the IEEE 9th Annual Symposium on Electron, Ion and Laser Beam Technology, edited by R. F. W. Pease, pp. 407–411. San Francisco Press, San Francisco.Google Scholar
  4. 4.
    Rounds, D. E., Olson, R. S., and Johnson, F. M. (1968): The effect of the laser on cellular respiration. Z. Zellforsch. 87:193–198.PubMedCrossRefGoogle Scholar
  5. 5.
    Chance, B. (1959): Electron transfer in biological systems. Proc. IRE 47:1821–1840.CrossRefGoogle Scholar
  6. 6.
    Berns, M. W., and Rounds, D. E. (1970): Laser microbeam studies on tissue culture cells. Ann. N.Y. Acad. Sci. 168:550–563.CrossRefGoogle Scholar
  7. 7.
    Peticolas, W., Goldsborough, J., and Rieckhoff, K. E. (1963): Double photon excitation in organic crystals. Phys. Rev. Lett. 10:43–45.CrossRefGoogle Scholar
  8. 8.
    Singh, S., and Stoicheff, B. P. (1963): Double-photon excitation of fluorescence in anthracene single crystals. J. Chem. Phys. 38:2032–2033.CrossRefGoogle Scholar
  9. 9.
    Hall, J. L., Jennings, D. A., and McClintock, R. (1963): Study of anthracene fluorescence excited by the ruby giant-pulse laser, Phys. Rev. Lett. 11:364–366.CrossRefGoogle Scholar
  10. 10.
    Rounds, D. E., Olson, R. S., and Johnson, F. M. (1966): Two-photon absorption in reduced nicotinamide adenine dinucleotide (NADH), NEREM Record 8:158–159.Google Scholar
  11. 11.
    Rounds, D. E., and Olson, R. S. (1967): Photoactivation of smooth muscle with the ruby laser. USAF School of Aerospace Medicine Technical Report 67-66, pp. 1–6.Google Scholar
  12. 12.
    Zweng, H. C., Flock, M., and Peabody, R. (1966): Histology of human ocular laser coagulation, Arch. Ophthalmol. 76:11–15.PubMedCrossRefGoogle Scholar
  13. 13.
    L’Esperance, F. A. (1966): Effects of laser radiation on retinal macular anomalies. Int. Ophthalmol. Clin. 6:351–358.PubMedCrossRefGoogle Scholar
  14. 14.
    Berler, D. K. (1967): A study of 150 eyes treated with ruby laser. Am. J. Ophthalmol. 64:114–116.PubMedGoogle Scholar
  15. 15.
    Campbell, C. J., Rittler, M. C., and Koester, C. J. (1966): Photocoagulation of the retina. Int. Ophthalmol. Clin. 6:293–318.PubMedCrossRefGoogle Scholar
  16. 16.
    Vallotton, W. W., and Antine, B. E. (1967): Laser versus xenon photocoagulation. South. Med. J. 60:819–822.PubMedCrossRefGoogle Scholar
  17. 17.
    Zweng, H. C. (1966): Clinical ocular laser coagulation. Int. Ophthalmol. Clin. 6:319–334.PubMedCrossRefGoogle Scholar
  18. 18.
    Olivella-Casals, A. (1965): Possibilities of laser in ophthalmology. Ann. Med. (Paris) 51:331–339.Google Scholar
  19. 19.
    Little, H. L., Zweng, H. C., and Peabody, R. R. (1970): Argon laser slit-lamp retinal photocoagulation. Trans. Am. Acad. Ophthalmol. Otolaryngol. 74:85–97.PubMedGoogle Scholar
  20. 20.
    Peabody, R. (1967): Treatment of macular disease. In: Record of the IEEE 9th Annual Symposium on Electron, Ion and Laser Beam Technology, edited by R. F. W. Pease, pp. 397–401. San Francisco Press, San Francisco.Google Scholar
  21. 21.
    Spalter, H. F. (1968): Photocoagulation of central serous retinopathy. Arch. Ophthalmol. 79:247–253.PubMedCrossRefGoogle Scholar
  22. 22.
    Zweng, H. C. (1971): Lasers in opthalmology. In: Laser Applications in Medicine and Biology, Vol. 1, edited by M. L. Wolbarsht, pp. 239–253. Plenum Press, New York.CrossRefGoogle Scholar
  23. 23.
    Cogan, D. G., Toussaint, D., and Kuwabara, T. (1961): Retinal vascular patterns. IV. Diabetic retinopathy. Arch. Ophthalmol. 66:366–378.PubMedCrossRefGoogle Scholar
  24. 24.
    Rounds, D. E., Olson, R. S., and Johnson, F. M. (1967): Wavelength specificity of laser-induced biological damage. In: Record of IEEE 9th Annual Symposium on Electron, Ion and Laser Beam Technology, edited by R. F. W. Pease, pp. 363–370. San Francisco Press, San Francisco.Google Scholar
  25. 25.
    L’Esperance, F. A. (1969): The retina and the optic nerve. Arch. Ophthalmol. 82:112–136.CrossRefGoogle Scholar
  26. 26.
    Zweng, H. C., Little, H. L., and Peabody, R. R. (1971): Argon laser photocoagulation of diabetic retinopathy. Arch. Ophthalmol. 86:345–400.CrossRefGoogle Scholar
  27. 27.
    Gitter, K. A., and Robinson, T. R. (1973): Techniques of argon laser photocoagulation. Ann. Ophthalmol. 5:703–714.PubMedGoogle Scholar
  28. 28.
    Bowbyes, J. A., Hamilton, A. M., Bird, A. C., et al. (1973): The argon laser—the effect on retinal tissues and its clinical applications. Trans. Ophthalmol. Soc. U.K. 93:437–453.Google Scholar
  29. 29.
    Francois, J., and Cambie, E. (1976): Further vision deterioration after argon laser photocoagulation in diabetic retinopathy. Ophthalmologica 173:28–39.PubMedCrossRefGoogle Scholar
  30. 30.
    Little, H. L., Zweng, H. C., Jack, R. L., et al. (1976): Techniques of argon laser photocoagulation of diabetic disk new vessels. Am. J. Ophthalmol. 82:675–683.PubMedGoogle Scholar
  31. 31.
    Hallman, V. L., Perkins, E. S., Watts, G. K., et al. (1968): Laserirradiationoftheanterior segment of the eye. Exp. Eye. Res. 7:481–486.CrossRefGoogle Scholar
  32. 32.
    Heydenreich, A. (1969): Lichtkoagulation im Bereich des Iris-Linson-Diaphragmas. Klin. Monatabi. Augenheilkd. 155:153–161.Google Scholar
  33. 33.
    Worthen, D. M. (1974): Laser treatment for glaucoma. Invest. Ophthalmol. 13:3–6.PubMedGoogle Scholar
  34. 34.
    Klein, E., Fine, S., Laor, Y., et al. (1965): Interaction of laser radiation with biological systems. II. Experimental tumors. Fed. Proc. Suppl. 14:S143-S149.Google Scholar
  35. 35.
    McGuff, P. E., Deterling, R. A., Jr., Gottlieb, L. S. et al. (1965): Effects of laser radiation on tumor transplants. Fed. Proc. Suppl. 14:S150-S154.Google Scholar
  36. 36.
    Minton, J. P., Zelen, M., and Ketcham, A. S. (1965): Some factors affecting tumor response after laser radiation. Fed. Proc. Suppl. 14:S155-S158.Google Scholar
  37. 37.
    Goldman, L. (1966): Applications of the laser beam in cancer biology (a review). Int. J. Cancer 1:309–318.CrossRefGoogle Scholar
  38. 38.
    Goldman, L. (1967): Laser treatment of cancer. Prog. Clin. Cancer 3:205–220.PubMedGoogle Scholar
  39. 39.
    Goldman, L., Rockwell, J., Meyer, R., et al. (1968): Investigativestudieswiththelaserinthe treatment of basal cell epitheliomas. South. Med. J. 61:735–742.PubMedCrossRefGoogle Scholar
  40. 40.
    Minton, J. P. (1966): A correlation of the laser wavelength absorption capability of experimental and human tumor relationship to the quantitation of human tumor destruction by pulsed laser radiation. Cancer 19:266–272.PubMedCrossRefGoogle Scholar
  41. 41.
    Hoye, R. C., Ketcham, A. S., and Riggle, G. C. (1967): The air-borne dissemination of viable tumor by high energy neodymium laser. Life Sci. 6:119–125.PubMedGoogle Scholar
  42. 42.
    Mullins, F., Hoye, R., Ketcham, A. S. etal. (1967): Studies in laserdestruction of chemically induced primate hepatomas. Am. Surg. 33:298–303.PubMedGoogle Scholar
  43. 43.
    Stellar, S., Polanyi, T., and Bredemeier, H. (1970): Experimental studies with the carbon dioxide laser as a neurosurgical instrument. Med. Biol. Eng. 8:549–558.PubMedCrossRefGoogle Scholar
  44. 44.
    Kaplan, I., Ger, R., and Sharon, U. (1973): The carbon dioxide laser in plastic surgery. Br. J. Plast. Surg. 26:359–362.PubMedGoogle Scholar
  45. 45.
    Hishimoto, K., Rockwell, R. J., Jr., Epstein, R. A., et al. (1974): Laser wound healing compared with other surgical modalities. Burns 1:13–21.CrossRefGoogle Scholar
  46. 46.
    Fidler, J. P., Law, E., MacMillan, B. G., et al. (1976): Comparison of carbon dioxide laser excision of burns with other thermal knives. Ann. N. Y. Acad. Sci. 267:254–262.PubMedCrossRefGoogle Scholar
  47. 47.
    Kaplan, I., and Sharon, Y. (1976): current laser surgery. Ann. N. Y. Acad. Sci. 267:247–253.Google Scholar
  48. 48.
    Hall, R. R. (1971): A carbon dioxide surgical laser. Ann. R. Coll. surg. Engl. 48 181–188.PubMedGoogle Scholar
  49. 49.
    Hall, R. R. (1971): Haemostatic incision of the liver: carbon dioxide laser compared with surgical diathermy. Br. J. Surg. 58:538–540.PubMedCrossRefGoogle Scholar
  50. 50.
    Hall, R. R. (1971): The healing of tissues incised by a carbon dioxide laser. Br. J. Surg. 58:222–228.PubMedCrossRefGoogle Scholar
  51. 51.
    Kaplan, I., and Ger, R. (1973): The carbon dioxide laser in clinical surgery. A preliminary report. Isr. J. Med. Sci. 9:79–83.PubMedGoogle Scholar
  52. 52.
    Strong, M. S., and Jako, G. J. (1972): Laser energy in the larynx. Early clinical experience with continuous CO2 laser. Ann. Otol. Rhinol. LaryngoL 81:791–796.PubMedGoogle Scholar
  53. 53.
    Dwyer, R. M., Haverback, B. J., Bass, M., et al. (1975): Laser-induced hemostasis in the canine stomach: Use of a flexible fiberoptic delivery system. J. AMA 231:486–489.Google Scholar
  54. 54.
    Fruehmorgen, P., Bodem, F., Reidenbach, H. D., et al. (1975): The first endoscopic laser coagulation in the human gastrointestinal tract. Endoscopy 7:156–157.CrossRefGoogle Scholar
  55. 55.
    Ansley, D. A., and Seibert, L. D. (1970): Pulsed laser holography. Ann. N. Y. Acad. Sci. 168:475–491.CrossRefGoogle Scholar
  56. 56.
    Wuerker, R. F. (1970): Holography and holographic interferometry: Industrial applications. Ann. N.Y. Acad. Sci 168:492–505.CrossRefGoogle Scholar
  57. 57.
    Vaughan, K. D., Laing, R. A., and Wiggins, R. L. (1974): Holography of the eye: A critical review. In: Laser Applications in Medicine and Biology, Vol. 2, edited by M. L. Wolbarsht, pp. 77–132. Plenum Press, New York.CrossRefGoogle Scholar
  58. 58.
    Holbrook, D. R., Richards, V., and Pitt, W. L. (1976): Medicalacoustical holography. Ann. N.Y. Acad. Sci. 267:295–311.CrossRefGoogle Scholar
  59. 59.
    Mullaney, P. F., Steinkamp, J. A., Crissman, H. A., et al. (1976): Laser flow microphotometry for rapid analysis and sorting of mammalian cells. Ann. N. Y. Acad. Sci. 267:176–190.PubMedCrossRefGoogle Scholar
  60. 60.
    Malamed, M. R., Kamentsky, L. A., and Boyse, E. A. (1969): Cytotoxic test automation: a live-dead cell differential counter. Science 163:285–286.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • D. E. Rounds
    • 1
  1. 1.Pasadena Foundation for Medical ResearchCaliforniaUSA

Personalised recommendations