Photobiology of Carotenoid Protection

  • N. I. Krinsky
Part of the Photobiology book series (PB)


When Sistrom, Griffiths, and Stanier (1) reported that carotenoid pigments protect cells against light under aerobic conditions in the purple-sulfur bacterium Rhodopseudomonas spheroides, they proposed that these pigments acted as “chemical buffers” and were oxidized during the process. They suggested that carotenoid epoxides might be the product of this chemical buffering effect. Carotenoid epoxides, however, although widely distributed in nature, have never been observed in bacteria (2). The function of carotenoid epoxides is still unknown but is under active investigation (3).


Triplet State Singlet Oxygen Carotenoid Pigment Dimethyl Ester Photosensitize Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sistrom, W. R., Griffiths, M., and Stanier, R. Y. (1956): The biology of a photosynthetic bacterium which lacks colored carotenoids. J. Cell. Comp. Physiol. 48:473–515.CrossRefGoogle Scholar
  2. 2.
    Liaaen-Jensen, S. (1979): Carotenoids—a chemosystematic approach, Pure Appl. Chem. 51:661–675.CrossRefGoogle Scholar
  3. 3.
    Yamamoto, H. Y. (1979): Biochemistryoftheviolaxanthincycle in higher plants. Pure Appl. Chem. 51:639–648.CrossRefGoogle Scholar
  4. 4.
    Mathews-Roth, M. M., and Krinsky, N. I. (1970): Studies on the protective function of the carotenoid pigments of Sarcina lutea. Photochem. Photobiol. 11:419–428.PubMedCrossRefGoogle Scholar
  5. 5.
    Krinsky, N. I. (1968): The protective functions of carotenoid pigments. In: Photophysiology, vol. 3, edited by A. C. Giese, pp. 123–195, Academic Press, New York.Google Scholar
  6. 6.
    Burns, E. R., Buchanan, G. A., and Carter, M. C. (1971): Inhibition of carotenoid synthesis as a mechanism of action of amitrole, dichlormate and pyriclor. Plant Physiol. 47:144–148.PubMedCrossRefGoogle Scholar
  7. 7.
    Hilton, J. L., St. John, J. B., Christiansen, M. N., et al. (1971): Interactions of lipoidal materials and a pyridazinone inhibitor of chloroplast development. Plant Physiol. 48: 171–177.PubMedCrossRefGoogle Scholar
  8. 8.
    Vaisberg, A. J., and Schiff, J. A. (1976): Events surrounding the early development of Euglena chloroplasts. 7. Inhibition of carotenoid biosynthesis by the herbicide SAN 9789 (4-chloro-5-(methylamino)-2-(α, α:, α-trifluoro-ra-tolyl)-3(2H) pyridazinone) and its developmental consequences. Plant Physiol. 57:260–269.PubMedCrossRefGoogle Scholar
  9. 9.
    Gollnick, K., and Schenck, G. O. (1967): Oxygen as a dienophile. In: 1,4-Cycloaddition Reactions, edited by J. Hamer, pp. 255–344, Academic Press, New York.Google Scholar
  10. 10.
    Blinks, L. R. (1964): Accessory pigments and photosynthesis. In: Photophysiology, vol. 1, edited by A. C. Giese, pp. 199–221. Academic Press, New York.Google Scholar
  11. 11.
    Cogdell, R. S. (1978): Carotenoids in photosynthesis. Phil. Trans. R. Soc. Lond. [Biol.] 284:569–579.CrossRefGoogle Scholar
  12. 12.
    Krinsky, N. I. (1971): Function. In: Carotenoids, edited by O. Isler, pp. 669–716. Birkhaüser Verlag, Basel.Google Scholar
  13. 13.
    Beddard, G. S., Davidson, R. S., and Trethewey, K. R. (1977): Quenching of chlorophyll fluorescence by ß-carotene. Nature 267:373–374.CrossRefGoogle Scholar
  14. 14.
    Mathis, P., and Galmiche, J. M. (1967): Action des gaz paramagnétiques sur un etat transitoire induit par un e’clair laser dans une suspension de chloroplastes. C. R. Acad. Sci. [D] (Paris) 264:1903–1906.Google Scholar
  15. 15.
    Mathis, P. (1971): Etude de formes transitoires des carotenoides. Thesis, University of Orsay, France.Google Scholar
  16. 16.
    Mathis, P., Butler, W. L., and Satoh, K. (1979): Carotenoid triplet state and chlorophyll fluorescence quenching in chloroplasts and subchloroplast particles. Photochem. Photobiol. 30:603–614.CrossRefGoogle Scholar
  17. 17.
    Searle, G. F. W., and Wessels, J. S. C. (1978): Role of β-carotene in the reaction centres of photosystems I and II of spinach chloroplasts prepared in non-polar solvents. Biochim. Biophys. Acta 504:84–99.PubMedCrossRefGoogle Scholar
  18. 18.
    Foote, C. S. (1976): Photosensitized oxidation and singlet oxygen: consequences in biological systems. In: Free Radicals and Biological Systems, vol. 2, edited by W. A. Pryor, pp. 85–133. Academic Press, New York.Google Scholar
  19. 19.
    Breton, J., and Mathis, P. (1970): Mise en evidence de l’état triplet de la chlorophylle dans des lamelles chloroplastiques. C. R. Acad. Sci. [D] (Paris) 271:1094–1096.Google Scholar
  20. 20.
    Fujimori, E., and Livingston, R. (1957): Interaction of chlorophyll in its triplet state with oxygen, carotene, etc. Nature 180:1036–1038.CrossRefGoogle Scholar
  21. 21.
    DeVault, D., and Kung, M. C. (1978): Interactions among photosynthetic antenna excited states. Photochem. Photobiol. 28:1029–1038.CrossRefGoogle Scholar
  22. 22.
    Chantrell, S. J., McAuliffe, C. A., Munn, R. W., et al. (1977): Excited states of protoporphyrin IX dimethyl ester: reaction of the triplet with carotenoids. J. Chem. Soc. [Faraday I] 73:858–865.CrossRefGoogle Scholar
  23. 23.
    Yamane, T., and Lamola, A. A. (1973): Red blood cell lysis induced by a product of singlet oxygen and cholesterol. In: Abstracts of the American Society for Photobiology, Sarasota, Florida, p. 66.Google Scholar
  24. 24.
    Kellogg, E. W., III, and Fridovich, I. (1975): Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J. Biol. Chem. 250:8812–8817.PubMedGoogle Scholar
  25. 25.
    Anderson, S. M., and Krinsky, N. I. (1973): The inhibition of photosensitized oxidations in liposomes by carotenoid pigments and free radical quenchers. Fed. Proe. 32:562.Google Scholar
  26. 26.
    Krinsky, N. I. (1979): Carotenoid protection against oxidation. Pure Appl. Chem. 51:649–660.CrossRefGoogle Scholar
  27. 27.
    Kautsky, H., De Bruijn, H., Neuwirth, R., et al. (1933): Energie-unwandlung an Grenzflachen. VII. Photosensibilisierte Oxydation als Wirkung eines Aktiven, metastabilen Zustandes des Sauerstoff-moleküls. Chem. Ber. 66:1588–1600.Google Scholar
  28. 28.
    Foote, C. S., and Wexler, S. (1964): Olefin oxidations with excited singlet molecular oxygen. J. Am. Chem. Soc. 86:3879–3880.CrossRefGoogle Scholar
  29. 29.
    Corey, E. J., and Taylor, W. C. (1964): Astudy of the peroxidation of organic compounds by externally generated singlet oxygen molecules. J. Am. Chem. Soc. 86:3881–3882.CrossRefGoogle Scholar
  30. 30.
    Foote, C. S., and Denny, R. W. (1968): Chemistry of singlet oxygen, VII. Quenching by β-carotene. J. Am. Chem. Soc. 90:6233–6235.CrossRefGoogle Scholar
  31. 31.
    Foote, C. S. (1979): Quenching of singlet oxygen. In: Singlet Oxygen, edited by H. H. Wasserman and R. W. Murray, pp. 139–171. Academic Press, New York.Google Scholar
  32. 32.
    Foote, C. S., Chang, Y. C., and Denny, R. W. (1970): Chemistry of singlet oxygen. X. Carotenoid quenching parallels biological protection. J. Am. Chem. Soc. 92:5216–5218.PubMedCrossRefGoogle Scholar
  33. 33.
    Claes, H. (1960): Interaction between chlorophyll and carotenes with different chromophoric groups. Biochem. Biophys. Res. Commun. 3:585–590.PubMedCrossRefGoogle Scholar
  34. 34.
    Claes, H., and Nakayama, T. O. M. (1959): Das photoxydative ausbleichen von Chlorophyll in vitro in gegenwart von Carotinen mit verschieden chromophoren Gruppen. Z. Naturforsch. 14b:746–747.Google Scholar
  35. 35.
    Mathews-Roth, M. M., Wilson, T., Fujimori, E., et al. (1974): Carotenoid chromophore length and protection against photosensitization. Photochem. Photobiol. 19:217–222.PubMedCrossRefGoogle Scholar
  36. 36.
    Mathis, P., and Kleo, J. (1973): The triplet state of ß-carotene and of analog polyenes of different length. Photochem. Photobiol. 18:343–346.CrossRefGoogle Scholar
  37. 37.
    Bensasson, R., Land, E. J., and Maudinas, B. (1976): Triplet states of carotenoids from photosynthetic bacteria studied by nanosecond ultraviolet and electron pulse irradiation. Photochem. Photobiol. 23:189–193.PubMedCrossRefGoogle Scholar
  38. 38.
    Salem, L. (1966): The Molecular Orbital Theory of Conjugated Systems, pp. 379–383. Benjamin, New York.Google Scholar
  39. 39.
    Claes, H. (1961): Energieübertrangung von angeregtem Chlorophyll auf C4O-Polyene mit verschiedenen chromophoren Gruppen. Z. Naturforsch. 16B:445–454.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • N. I. Krinsky
    • 1
  1. 1.Department of Biochemistry and PharmacologyTufts University School of MedicineBostonUSA

Personalised recommendations