Chemical Germplasm Investigations in Soybeans: The Flotsam Hypothesis

  • Theodore Hymowitz
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 14)


The genus Glycine Willd. is currently divided into two subgenera Glycine and Soja (Moench) F. J. Herm.1 The subgenus Soja includes the soybean, G. max (L.) Merr. and its closest relative, the wild soybean, G. soja Sieb. and Zucc. (Table 1.). The wild soybean is found in open fields, hedgerows, along roadsides and riverbanks in the Republic of China, adjacent areas of the USSR (Primorskiy and Khaborovsk Kray), Korea, Japan and Taiwan.2 Both G. max and G. soja are diploids (2n=40).3–10 Evidence gather from cytogenetic, morphological and seed protein studies suggest that the two species are conspecific11–16 and supports the hypothesis that G. soja is the wild ancestor of the cultivated soybean.3,4 There are few, if any, cytogenetic barriers to hybridization between the two species.


Trypsin Inhibitor Seed Protein Soybean Seed Wild Soybean Soybean Trypsin Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hymowitz, T., C.A. Newell. (n.d.) In: (R.J. Summerfield,ed.) Advances in Legume Science.Royal Botanic Garden, Kew.Google Scholar
  2. 2.
    Herman, F.J. 1962. A revision of the genus Glycine and its immediate allies. USDA Techn. Bull. 1268: 1–79.Google Scholar
  3. 3.
    Hadley, H.H., T. Hymowitz. 1973. In (B.E. Caldwell, ed.) Soybeans: Improvement, Production and Uses. Amer. Soc. of Agron. ( Madison, WI ) Chapter 3.Google Scholar
  4. 4.
    Fukada, Y. 1933. Cyto-genetical studies on the wild and cultivated Manchurian soybeans (Glycine L.) Jap. J. Bot. 6: 489–506.Google Scholar
  5. 5.
    Karasawa, K. 1936. Crossing experiments with Glycine soja and G. ussuriensis. Jap. J. Bot. 8: 113–118.Google Scholar
  6. 6.
    Karpenchenko, G.D. 1925. On the chromosomes of the Phaseolinae. Bull. Appl. Bot. and Plant Breeding (Leningrad) 14:143–148.Google Scholar
  7. 7.
    Kawakami, J. 1930. Chromosome numbers in Leguminosae. Bot. Mag., Tokyo, 44: 319.Google Scholar
  8. 8.
    Veatch, C. 1934. Chromosomes of the soybean. Bot. Gaz. 96: 189.CrossRefGoogle Scholar
  9. 9.
    Tschechow, W., N. Kartaschowa. 1932. Karyologischsystematische untersuchung der tribus Loteae and Phaseoleae. Unterfam. Papilionatae. CytóT6gia 3: 221–249.Google Scholar
  10. 10.
    Newell, C.A., T. Hymowitz. 1978. Seed coat variation in Glycine Willd. subgenus Glycine (Leguminosae) by SEM. Brittonia 30: 76–88.CrossRefGoogle Scholar
  11. 11.
    Lu, Y.C. 1966. Studies on the morphology, physiology and cytogenetics of cultivated, semi-cultivated and wild soybeans. J. Agr. Forest 15: 1–23.Google Scholar
  12. 12.
    Mies, D.W., T. Hymowitz. 1973. Comparative electrophoretic studies of trypsin inhibitors in seed of the genus Glycine. Bot. Gaz. 134: 121–125.CrossRefGoogle Scholar
  13. 13.
    Tang, W.T., C.H. Chen. 1959. Preliminary studies on the hybridization of the cultivated and wild bean [Glycine max Merrill and G. formosana (Hosokawa)]. J. Agr. Ass. China N.S.Google Scholar
  14. 14.
    Tang, W.T., G. Tai. 1962. Studies on the qualitative and quantitative inheritance of an interspecific cross of soybean, Glycine max x G. formosana. Bot. Bull. Acad. Sinica 3: 39–54.Google Scholar
  15. 15.
    Ting, C.L. 1946. Genetic studies on the wild and cultivated soybeans. J. Amer. Soc. Agron. 38: 381–393.CrossRefGoogle Scholar
  16. 16.
    Weber, C.R. 1950. Inheritance and interrelation of some agronomic and chemical characters in an interspecific cross in soybeans, Glycine max x G. ussuriensis. Iowa Agr. Exp. Sta. Res BuTr 37: 767–816.Google Scholar
  17. 17.
    Hymowitz, T. 1970. On the domestication of the soybean. Econ. Bot. 24: 408–421.CrossRefGoogle Scholar
  18. 18.
    Hymowitz, T., R.G. Palmer, H.H. Hadley. 1972. Seed weight, protein, oil and fatty acid relationships within the genus Glycine. Trop. Agric. (Trinidad) 49: 245–250.Google Scholar
  19. 19.
    Harlan, J.R. 1967. A wild wheat harvest in Turkey. Archaeology 20: 197–201.Google Scholar
  20. 20.
    Harlan, J.R. 1976. Genetic resources in wild relatives of crops. Crop Sci. 16: 329–333.CrossRefGoogle Scholar
  21. 21.
    Brim, C.A. 1973. In: (B.E. Caldwell, ed.) Soybeans: Improvement, Prodcuction and Uses. Amer. Soc. of Agron. ( Madison, WI ), Chapter 5.Google Scholar
  22. 22.
    Osborne, T.B., L.B. Mendel. 1917. The use of soybean as feed. J. Biol. Chem. 32: 369–377.Google Scholar
  23. 23.
    Borchers, R., C.W. Anderson, F.E. Mussehl, A. Moehl. 1948. Trypsin inhibitors. VIII. Growth inhibiting properties of a soybean trypsin inhibitor. Arch. Biochem. 19: 317–322.PubMedGoogle Scholar
  24. 24.
    Westfall, R.J., S.M. Hauge. 1948. The nutritive quality and the trypsin inhibitor content of soybean flour heated at various temperatures. J. Nutr. 35: 379–389.PubMedGoogle Scholar
  25. 25.
    Rackis, J.J., R.L. Anderson. 1964. Isolation of four soybean trypsin inhibitors by DEAE-cellulose chromatography. Biochem. Biophys. Res. Commun. 15: 230–235.PubMedCrossRefGoogle Scholar
  26. 26.
    Rackis, J.J., H.A. Sasame, R.K. Mann, R.L. Anderson, A.K. Smith. 1962. Soybean trypsin inhibitors: Isolation, purification and physical properties. Arch. Biochem. Biophys. 98: 471–478.CrossRefGoogle Scholar
  27. 27.
    Rackis, J.J. 1965. Physiological properties of soybean trypsin inhibitors and their relationships to pancreatic hypertrophy and growth inhibition of rats. Feder. Proc. 24: 1488–1493.Google Scholar
  28. 28.
    Kakade, M.L., D.E. Hoffa, I.E. Liener. 1973. Contribution of trypsin inhibitors to the deleterious effects of unheated soybeans fed to rats. J. Nutr. 103: 1772–1778.PubMedGoogle Scholar
  29. 29.
    Bray, D.J. 1964. Pancreatic hypertrophy in layering pellets induced by unheated soybean meal. Poultry Sci. 43: 382–384.CrossRefGoogle Scholar
  30. 30.
    Chernick, S.S., S. Lepkovsky, I.L. Chaikoff. 1948. A dietary factor regulating the enzyme content of the pancreas. Changes induced in size and proteolytic activity of the chick pancreas by the ingestion of raw soybean meal. Am. J. Physiol. 155: 33–41.PubMedGoogle Scholar
  31. 31.
    Liener, I.E., M.L. Kakade. 1969. In: ( I. E. Liener, ed.) Toxic Constituents of Plant Foodstuffs, Academic Press (few York), Chapter 2.Google Scholar
  32. 32.
    Rackis, J.J. 1972. In (A.K. Smith and S.J. Circle, eds.) Soybeans, Clemistry and Technology, Vol. 1, AVI Publ. Co. Inc. ( Westport, CT ), Chapter 6.Google Scholar
  33. 33.
    Booth, A.W., A.J. Robbins, W.E. Rebelin, F.D. (eds.) 1960. Effect of raw soybean meal and amino acids on pancreatic hypertrophy in rats. Proc. Soc. Exptl. Biol. Med. 104:681–683.Google Scholar
  34. 34.
    Bowman, D.E. 1944. Fractions derived from soybeans and navy beans which retard the tryptic digestion of casein. Proc. Soc. Exptl. Biol. Med. 57: 139–140.Google Scholar
  35. 35.
    Eldridge, A.C., R.L. Anderson, W.J. Wolf. 1966. Polyacrylamide gel electrophoresis of soybean whey proteins and trypsin inhibitors. Arch. Biochem. Biophys. 115: 495–504.PubMedCrossRefGoogle Scholar
  36. 36.
    Frattali, V., R.F. Steiner. 1968. Soybean inhibitors. I. Separations and some properties of three inhibitors from commercial crude soybean trypsin inhibitor. Biochem. 7: 521–530.CrossRefGoogle Scholar
  37. 37.
    Kunitz, M. 1945. Crystallization of a soybean trypsin inhibitor from soybean. Science 101: 668–669.PubMedCrossRefGoogle Scholar
  38. 38.
    Birk, Y. 1961. Purification and some properties of a highly active inhibitor of trypsin and chymotrypsin from soybeans. Biochem. Biophys. Acta 54: 378–381.PubMedCrossRefGoogle Scholar
  39. 39.
    Yamamoto, M., T. Ikenaka. 1967. Studies on soybean trypsin inhibitors. I. Purification and characterization of two soybean trypsin inhibitors. J. Biochem. (Tokyo) 62: 141–149.Google Scholar
  40. 40.
    Koide, T., T. Ikenada. 1973. Studies on soybean trypsin inhibitors: 3. Amino-acid sequence of the carboxyl-terminal region and the complete amino-acid sequence of soybean trypsin inhibitor (Kunitz). Eur. J. Biochem. 32: 417–431.PubMedCrossRefGoogle Scholar
  41. 41.
    Hymowitz, T. 1973. Electrophoretic analysis of SBTI-A2 in the USDA soybean germplasm collection. Crop Sci. 13: 420–421.CrossRefGoogle Scholar
  42. 42.
    Hymowitz, T., J.H Orf, N. Kaizuma, H. Skorupska. 1978. Screening the USDA soybean germplasm collection for Kunitz trypsin inhibitor mutants. Soybean Genet. Newsl. 5: 19–22.Google Scholar
  43. 43.
    Clark, R.W., D.W. Mies, T. Hymowitz. 1970. Distribution of a trypsin inhibitor variant in seed proteins of soybean varieties. Crop Sci. 10: 486–487.CrossRefGoogle Scholar
  44. 44.
    Hymowitz, T., D.W. Mies, C.J. Klebek. 1971. Frequency of a trypsin inhibitor variant in seed protein of four soybean populations. East Afr. Agr. For. J. 37: 62–72.Google Scholar
  45. 45.
    Orf, J.H. 1976. Electrophoretic studies on seed proteins of Glycine max (L.) Merrill. M.S. Thesis, University of Illinois, Urbana.Google Scholar
  46. 46.
    Skorupska, H., T. Hymowitz. 1977. On the frequency distribution of alleles of two seed proteins in European soybean [Glycine max (L.) Merrill] germplasm: Implications on fhe origin of European soybean germplasm. Genetica Polonica 18: 217–224.Google Scholar
  47. 47.
    Singh, L., C.M. Wilson, H.H. Hadley. 1969. Genetic differences in soybean trypsin inhibitors separated by disc electrophoresis. Crop Sci. 9: 489–491.CrossRefGoogle Scholar
  48. 48.
    Orf, J.H., T. Hymowitz. 1979. Inheritance of the absence of the Kunitz trypsin inhibitor in seed protein of soybeans. Crop Sci. 19: 107–109.CrossRefGoogle Scholar
  49. 49.
    Hymowitz, T., H.H. Hadley. 1972. Inheritance of a trypsin inhibitor variant in seed protein of soybeans. Crop Sci. 12: 197–198.CrossRefGoogle Scholar
  50. 50.
    Orf, J.H., T. Hymowitz. 1977. Inheritance of a second trypsin inhibitor variant in seed protein of soybeans. Crop Sci. 17: 811–813.CrossRefGoogle Scholar
  51. 51.
    Hwang, D.L., W.K. Yang, D.E. Foard, K.T. Davis Lin. 1978. Rapid release of protease inhibitors from soybeans. Immuno-chemical quantitative and parallels with lectins. Plant Physiol. 61: 30–34.PubMedCrossRefGoogle Scholar
  52. 52.
    Hildebrand, D.F., J.H. Orf, T. Hymowitz. 1980. Inheritance of an acid phosphatase and its linkage with the Kunitz trypsin inhibitor in seed protein of soybeans. Crop Sci. 20 (in press).Google Scholar
  53. 53.
    Jaffe, W.G. 1969. In: (I.E. Liener, ed.) Toxic Constituents of Plant 1–âodstuffs, Academic Press (New York ) Chapter 3.Google Scholar
  54. 54.
    Weinhaus, O. 1909. Zur biochemic des phasins. Biochemische Zeitschrift 18: 228–260.Google Scholar
  55. 55.
    Liener, I.E., M.J. Pallansch. 1952. Purification of a toxic substance from defatted soybean meal. J. Biol. Chem. 197: 29–36.PubMedGoogle Scholar
  56. 56.
    Catsimpoolas, M., E.W. Meyer. 1969. Isolation of soybean hemagglutinin and demonstration of multiple forms by isoelectric focusing. Arch. Biochem. Biophys. 132: 279–285.PubMedCrossRefGoogle Scholar
  57. 57.
    Fountain, D.W., W. Yang. 1977. Isolectins from soybean (Glycine max) Biochem. Biophys. Acta 492: 176–185.Google Scholar
  58. 58.
    Lis, H., C. Fridman, N. Sharon, E. Katchalski. 1966. Multiple hemagglutinins in soybean. Arch. Biochem. Biophys. 117: 301–309.PubMedCrossRefGoogle Scholar
  59. 59.
    Rackis, J.J., H.A. Sasame, R.L. Anderson, A.K. Smith. 1959. Chromatography of soybean whey proteins on diethylaminoethylcellulose. J. Am. Chem. Soc. 81: 6265–6270.CrossRefGoogle Scholar
  60. 60.
    Stead, R.H., H.J.H. DeMuelenaere, G.V. Quicke. 1966. Trypsin inhibitor, hemagglutination and intraperitoneal toxicity in extracts of Phaseolus vulgaris and Glycine max. Arch. Biochem. Biophys. 113: 703–708.PubMedCrossRefGoogle Scholar
  61. 61.
    Liener, I.E., J.E. Rose. 1953. Soyin, a toxic protein from the soybean. III. Immunochemical properties. Proc. Soc. Exptl. Biol. Med. 83: 539–544.Google Scholar
  62. 62.
    Lotan, R., H.W. Siegelman, H. Lis, N. Sharon. 1974. Subunit structure of soybean agglutinin. J. Biol. Chem. 249: 1219–1224.PubMedGoogle Scholar
  63. 63.
    Lotan, R., R. Cacan, M. Cacan, H. Debray, W.G. Carter, N. Sharon. 1975. On the presence of two types of subunit in soybean agglutinin. Fed. Europ. Biochem. Soc. Lett. 75: 100–103.CrossRefGoogle Scholar
  64. 64.
    Lis, H., B. Sela, L. Sachs, N. Sharon. 1970. Specific inhibition by N-acetyl-D-galactosamine of the interaction between soybean agglutinin and animal cell surfaces. Biochem. Biophys. Acta. 211: 582–585.PubMedCrossRefGoogle Scholar
  65. 65.
    Pull, S.P. 1978. An analysis of soybean lectin content in the seeds of 51 lines of Glycine max (L.) Merr. M.S. Thesis, University ofMlssouri,t. Louis.Google Scholar
  66. 66.
    Orf, J.H. 1979. Genetic and nutritional studies of seed lectin, Kunitz trypsin inhibitor, and other proteins of soybean [Glycine max (L.) Merrill]. Ph.D. Dissertation, erse ÿ of Illinois, Urbana.Google Scholar
  67. 67.
    Pull, S.P., S.G. Pueppke, T. Hymowitz, J.H. Orf. 1978. Screening soybeans for lectin content. Soybean Genet. Newsl. 5: 66–70.Google Scholar
  68. 68.
    Pull, S.P., S.G. Pueppke, T. Hymowitz, J.H. Orf. 1978. Soybean lines lacking the 120,000 dalton seed lectin. Science 200: 1277–1279.PubMedCrossRefGoogle Scholar
  69. 69.
    Orf, J.H., T. Hymowitz, S.P. Pull, S.G. Pueppke. 1978. Inheritance of a soybean seed lectin. Crop Sci. 18: 899–900.CrossRefGoogle Scholar
  70. 70.
    Liener, I.E. 1953. Soyin, a toxic protein from the soybean. I. Inhibition of rat growth. J. Nutr. 49: 527–539.PubMedGoogle Scholar
  71. 71.
    Bahlool, B.B., E.L. Schmidt. 1974. Lectins: a possible basis for specificity in the Rhizobium-legume root nodule symbiosis. Science 185: 269–271.CrossRefGoogle Scholar
  72. 72.
    Bhuvaneswari, T.V., S.G. Pueppke, W.D. Bauer. 1977. Binding of soybean lectin to rhizobia. Plant Physiol. 60: 486–491.PubMedCrossRefGoogle Scholar
  73. 73.
    Bahlool, B.B., E.L. Schmidt. 1976. Immunofluorescent polar tips of Rhizobium japonicum: possible site of attachment of lectin binding. J. Bacteriol. 125: 1188–1194.Google Scholar
  74. 74.
    Kauss, H., C. Glaser. 1974. Carbohydrate binding proteins from plant cell walls and their possible involvement in extension growth. FEBS Letters 45: 304–307.PubMedCrossRefGoogle Scholar
  75. 75.
    Reporter, M., D. Raveed, G. Norris. 1975. Binding of Rhizobium japonicum to cultured soybean cell roots: morphological evidence. Plant Sci. Lett. 5: 73–76.CrossRefGoogle Scholar
  76. 76.
    Liener, I.E. 1974. Phytohemagglutinins: their nutritional significance. J. Agric. Food Chem. 22: 17–23.PubMedCrossRefGoogle Scholar
  77. 77.
    Janzen, D.H., H.B. Juster, I.E. Liener. 1976. Insecticidal action of the phytohemagglutinin in black beans on a bruchid beetle. Science 192: 795–796.PubMedCrossRefGoogle Scholar
  78. 78.
    Mirelman, D., E.E. Galun, N. Sharon, R. Lotan. 1975. Inhibition of fungal growth by wheat germ agglutinin. Nature 256: 414–416.PubMedCrossRefGoogle Scholar
  79. 79.
    Birk, Y., A. Gertler. 1961. Effect of mild chemical and enzymatic treatments of soybean meal and soybean trypsin inhibitors on their nutritive and biochemical properties. J. Nutr. 75: 379–387.PubMedGoogle Scholar
  80. 80.
    Turner, R.H., I.E. Liener. 1975. The effect of the selective removal of hemagglutinins on the nutritive value of soybeans. J. Agric. Food Chem. 23: 484–487.PubMedCrossRefGoogle Scholar
  81. 81.
    Orf, J.H., T. Hymowitz. 1979. Soybean linkage test between Ti and Le seed proteins. Soybean Genet. Newsl. 6: 32.Google Scholar
  82. 82.
    Kinsella, J.E. 1979. Functional properties of soy proteins. J. Am. Oil Chemists’ Soc. 56: 242–258.CrossRefGoogle Scholar
  83. 83.
    Gertler, A., Y. Birk. 1965. Purification and characterization of 0–amylase from soya beans. Biochem. J. 95: 621–627.PubMedGoogle Scholar
  84. 84.
    Greenwood, C.T., A.W. Macgregor, E.A. Milne. 1965. Starch degrading enzymes. II. The 0–enzyme from soybeans; purification and properties. Carbohydrate Res. 1: 229–241.CrossRefGoogle Scholar
  85. 85.
    Peat, S., W.J. Whelan, S.J. Pirt. 1949. The amylolytic enzymes of soybean. Nature 164: 499–500.PubMedCrossRefGoogle Scholar
  86. 86.
    Birk, Y., M. Waldman. 1965. Amylolytic, trypsininhibiting, and urease-activity in three varieties of soybeans and in the soybean plant. Qualitias Plantarum et Materiae Vegetabiles 12: 200–209.Google Scholar
  87. 87.
    Fukumoto, J., Y. Tsujisaka. 1954. Studies on soybean amylase. Purification and crystallization of the 0–amylase of soybean. Kagaku to Kogyo, Osaka 28: 282–287 (in Japanese).Google Scholar
  88. 88.
    Morita, Y., F. Yagi, S. Aibara, H. Yamashita. 1976. Chemical composition and properties of soybean ß-amylase. J. Biochem. 79: 591–603.PubMedGoogle Scholar
  89. 89.
    Gorman, M.B., Y.T. Kiang. 1977. Variety specific electrophoretic variants of four soybean enzymes. Crop Sci. 17: 963–965.CrossRefGoogle Scholar
  90. 90.
    Gorman, M.B., Y.T. Kiang. 1978. Models for the inheritance of several variant soybean electrophoretic zymograms. J. Heredity 69: 255–258.Google Scholar
  91. 91.
    Hildebrand, D.F., T. Hymowitz. 1980. The Spi locus in soybean codes for ß-amylase. Crop Sci. 20: 165–168.CrossRefGoogle Scholar
  92. 92.
    Larsen, A.L. 1967. Electrophoretic differences in seed proteins among varieties of soybean, Glycine max (L.) Merrill. Crop Sci. 7: 311–313.CrossRefGoogle Scholar
  93. 93.
    Larsen, A.L., B.E. Caldwell. 1968. Inheritance of certain proteins in soybean seed. Crop Sci. 8: 474–476.CrossRefGoogle Scholar
  94. 94.
    Orf, J.H., T. Hymowitz. 1976. The gene symbols Spia and 52p1b assigned to Larsen and Caldwell’s seed protein bands A and B. Soybean Genet. Newsl. 3: 27–28.Google Scholar
  95. 95.
    Hildebrand, D.F., T. Hymowitz. 1979. Inheritance of the lack of ß-amylase activity in soybean seed. Agron. Abs., p. 63.Google Scholar
  96. 96.
    Hymowitz, T., N. Kaizuma, J.H. Orf, H. Skorupska. 1979. Screening the USDA soybean germplasm collection for 5.11 variants. Soybean Genet. Newsl. 6: 30–32.Google Scholar
  97. 97.
    Wilson, L.S., V.A. Birmingham, D.P. Moon, H.E. Snyder. 1978. Isolation and characterization of starch from mature soybeans. Cereal Chem. 55: 661–670.Google Scholar
  98. 98.
    Yazdi-Samadi, B., R.W. Rinne, R.D. Seif. 1977. Components of developing soybean seeds: oil, protein, sugars, starch, organic acids, and amino acids. Agron. J. 69: 481–486.CrossRefGoogle Scholar
  99. 99.
    Dunn, G. 1974. A model for starch breakdown in higher plants. Phytochem. 13: 1341–1346.CrossRefGoogle Scholar
  100. 100.
    Whittaker, R.H., P.P. Feeny. 1971. Allelochemics: chemical interactions between species. Science 171: 767–770.CrossRefGoogle Scholar
  101. 101.
    Ehrlich, P.R., P.H. Raven. 1967. Butterflies and plants. Sci. Amer. 216: 104–113.CrossRefGoogle Scholar
  102. 102.
    Freedland, W.J., D.H. Janzen. 1974. Strategies in herbivory by mammals: the role of plant secondary compounds. Amer. Natur. 108: 269–289.CrossRefGoogle Scholar
  103. 103.
    Seigler, D.S. 1977. Primary roles for secondary compounds. Biochem. Syst. & Ecol. 5: 195–199.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Theodore Hymowitz
    • 1
  1. 1.Department of AgronomyUniversity of IllinoisUrbanaUSA

Personalised recommendations