Corn Kernel Modification

  • Evelyn J. Weber
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 14)

Abstract

Corn is an excellent example of applied phytochemistry. Many genetic modifications of corn seeds have been studied, and a number of these modifications have had or may have economic value. The importance of corn to the economy of the United States can be illustrated by reviewing recent statistics.

Keywords

Sugar Sucrose Steam Explosive Hull 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parrott, R.B. 1979. Changing horizons of U.S. agriculture. Cereal Foods World 24: 176–179.Google Scholar
  2. 2.
    Hardin, C.M. 1979. Research and agriculture. Cereal Foods World 24: 175.Google Scholar
  3. 3.
    Jugenheimer, R.W. 1976. Corn Improvement, Seed Production and Uses. John Wiley & Sons, Inc. ( New York, NY).Google Scholar
  4. 4.
    Curry, J. 1979. Corn agriculture, USA. In: Corn Annual. Corn Refiners Association, Inc. (Wash., DC), pp-12–15.Google Scholar
  5. 5.
    Harrington, W.R. 1979. Introduction. In: Corn Annual. Corn Refiners Association, Inc. ( Wdi., DC ), pp. 4–5.Google Scholar
  6. 6.
    Bauman, L.F., E.T. Mertz, A. Caballo and E.W. Sprague, (eds). 1975. High Quality Protein Maize. Dowden, Hutchinson and Ross, Inc. ( Stroudsburg, PA ).Google Scholar
  7. 7.
    Sprague, G.F., (ed.). 1977. Corn and Corn Improvement. American Society of Agronomy, Inc. ( Madison, WI ).Google Scholar
  8. 8.
    Walden, D.B., (ed.). 1978. Maize Breeding and Genetics. John Wiley & Sons. ( New York, NY ).Google Scholar
  9. 9.
    Alexander, D.E. and R.G. Creech. 1977. Breeding special industrial and nutritional types. In: Corn and Corn Improvement. ( G.F. Sprague, ed.) American Society of Agronomy, Inc., Madison, WI. pp. 363–390.Google Scholar
  10. 10.
    Weaver, B.L. and A.E. Thompson. 1957. Fifteen generations of selection for improved popping expansion in White Hulless popcorn. Illinois Agricultural Experiment Station Bulletin 616.Google Scholar
  11. 11.
    Richardson, D.L. 1959. Pericarp thickness in popcorn. Agron. J. 52: 77–80.CrossRefGoogle Scholar
  12. 12.
    Kramer, H.H., P.L. Pfahler and R.L. Whistler. 1958. Gene interactions in maize affecting endosperm properties. Agron. J. 50: 207–210.CrossRefGoogle Scholar
  13. 13.
    Bear, R.P. 1958. The story of amylomaize hybrids. Chemurgic Digest 17: 5.Google Scholar
  14. 14.
    Vineyard, M.L. and R.P. Bear. 1952. Amylose content. Maize Genetics Coop. News Letter 26: 5.Google Scholar
  15. 15.
    Zuber, M.S., W.L. Deatherage, C.O. Grogan and M.M. MacMasters. 1960. Chemical composition of kernel fractions of corn samples varying in amylose content. Agron. J. 52: 572–575.CrossRefGoogle Scholar
  16. 16.
    Haunold, A. and M.F. Lindsey. 1964. Amylose analysis of single kernels and its implication for breeding of high-amylose corn. Crop Sci. 4: 58–60.CrossRefGoogle Scholar
  17. 17.
    Helm, J.L., V.L. Fergason and M.S. Zuber. 1967. Development of high amylose corn by the backcross method. Crop. Sci. 7: 659–663.CrossRefGoogle Scholar
  18. 18.
    Helm, J.L., A.V. Paez, P.J. Loesch, Jr. and M.S. Zuber. 1971. Test weight in high amylose corn. Crop Sci. 11: 75–77.CrossRefGoogle Scholar
  19. 19.
    Collins, G.N. 1909. A new type of Indian corn from China. U.S. Dept. of Agric. Bulletin 161.Google Scholar
  20. 20.
    Sprague, G.F. and M.T. Jenkins. 1948. The development of waxy corn for industrial use. Iowa State College J. Sci. 22: 205–213.Google Scholar
  21. 21.
    Watson, S.A. 1977. Industrial utilization of corn. In: Corn and Corn Improvement. (G.F. Sprague, ed.).–American Society of Agronomy, Inc. ( Madison, WI ), pp. 721–763.Google Scholar
  22. 22.
    Nelson, O.E. and H.W. Rines. 1962. The enzymatic deficiency in the waxy mutant of maize. Biochem. Biophys. Res. Commun. 9: 297–300.PubMedCrossRefGoogle Scholar
  23. 23.
    Nelson, O.E., Jr. 1978. Gene action and endosperm development in maize. In: Maize Breeding and Genetics. ( D.B. Walden, ed.). John Wiley & Sons (New York, NY ), pp. 389–403.Google Scholar
  24. 24.
    Tsai, C.-Y. and O.E. Nelson. 1966. Starch-deficient maize mutant lacking adenosine diphosphate glucose pyrophosphorylase activity. Science 151: 341–343.PubMedCrossRefGoogle Scholar
  25. 25.
    Dickinson, D.B. and J. Preiss. 1969. Presence of ADP-glucose pyrophosphorylase activity in shrunken-2 and brittle-2 mutants of maize endosperm. Plant Physiol. 44: 1058–1062.PubMedCrossRefGoogle Scholar
  26. 26.
    Hannah, L.C. and O.E. Nelson. 1975. Characterization of adenosine diphosphate glucose pyrophosphorylases from developing maize seeds. Plant Physiol. 55: 297–302.PubMedCrossRefGoogle Scholar
  27. 27.
    Chourey, P.S. and O.E. Nelson. 1976. The enzymatic deficiency conditioned by the shrunken-1 mutation in maize. Biochem. Genetics 14: 1041–1055.CrossRefGoogle Scholar
  28. 28.
    Laughnan, J.R. 1953. The effect of the sh2 factor on carbohydrate reserves in the mature endosperm of maize. Genetics 38: 485–499.PubMedGoogle Scholar
  29. 29.
    Nass, H.G. and P.L. Crane. 1970. Effect of endosperm mutants on germination and early seedling growth rate in maize (Zea mays L.). Crop Sci. 10: 139–140.CrossRefGoogle Scholar
  30. 30.
    Rowe, D.E. and D.L. Garwood. 1978. Effects of four maize endosperm mutants on kernel vigor. Crop Sci. 18: 709–712.CrossRefGoogle Scholar
  31. 31.
    Soberalske, R.M. and R.H. Andrew. 1978. Gene effects on kernel moisture and sugars of near-isogenic lines of sweet corn. Crop. Sci. 18: 743–746.CrossRefGoogle Scholar
  32. 32.
    Andrew, R.H. and J.H. von Elbe. 1979. Processing potential for diallel hybrids of high-sugar corn. Crop Sci. 19: 216–218.CrossRefGoogle Scholar
  33. 33.
    Gonzales, J.S., A.M. Rhodes and D.B. Dickinson. 1976. Carbohydrate and enzymic characterization of a high sucrose sugary inbred line of sweet corn. Plant Physiol. 58: 28–32.PubMedCrossRefGoogle Scholar
  34. 34.
    Hopkins, C.G. 1899. Improvement in the chemical composition of the corn kernel. Illinois Agric. Exp. Station Bulletin 55: 205–240.Google Scholar
  35. 35.
    Dudley, J.W. 1977. Seventy-six generations of selection for oil and protein percentage in maize. In: Proc. Int’l. Conference on Quantitative Genetics. (E. Pollak, O. Kempthorne and T.B. Bailey, Jr., eds), Iowa State University Press, ( Ames, IA ), pp. 459–473.Google Scholar
  36. 36.
    Dudley, J.W., R.J. Lambert and I.A. de la Roche. 1977. Genetic analysis of crosses among corn strains divergently selected for percent oil and protein. Crop Sci. 17: 111–117.CrossRefGoogle Scholar
  37. 37.
    Pollmer, W.G., D. Eberhard and D. Klein. 1978. Inheritance of protein and yield of grain and stover in maize. Crop. Sci. 18: 757–759.CrossRefGoogle Scholar
  38. 38.
    Mertz, E.T., L.S. Bates and 0.E. Nelson. 1964. Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145: 279–280.PubMedCrossRefGoogle Scholar
  39. 39.
    Jiminez, J.R. 1966. Protein fractionation studies of high lysine corn. In: Proc. of the High Lysine Corn Conference, Purdue University. T. Mertz and O.E. Nelson, eds.), Corn Industries Research Foundation. ( Wash. DC ), pp. 74–79.Google Scholar
  40. 40.
    Nelson, O.E., E.T. Mertz and L.S. Bates. 1965. Second mutant gene affecting the amino acid pattern of maize endosperm proteins. Science 150: 1469–1470.PubMedCrossRefGoogle Scholar
  41. 41.
    Hansel, L.W., C.-Y. Tsai and 0.E. Nelson. 1973. The effect of the floury-2 gene on the distribution of protein fractions and methionine in maize endosperm. Cereal Chem. 50: 383–394.Google Scholar
  42. 42.
    McWhirter, K.S. 1971. A floury endosperm, high lysine locus on chromosome 10. Maize Genetics Coop. News Letter 45: 184–185.Google Scholar
  43. 43.
    Ma, Y. and 0.E. Nelson. 1975. Amino acid composition and storage proteins in two new high-lysine mutants in maize. Cereal Chem. 52: 412–419.Google Scholar
  44. 44.
    Tsai, C.-Y. and A. Dalby. 1974. Comparison of the effect of shrunken-4, opaque-2, opaque-7, and floury-2 genes on the zein content of maize during endosperm development. Cereal Chem. 51: 825–829.Google Scholar
  45. 45.
    Burr, B. and O.E. Nelson. 1973. The phosphorylases of developing maize seeds. Ann. N.Y. Acad. Sci. 210:129–138.Google Scholar
  46. 46.
    Foard, D., Y. Ma and O.E. Nelson. 1974. The mutations de*-91 and de*-92. Maize Genetics Coop. News Letter 45: 169–172.Google Scholar
  47. 47.
    Lee, K.H., R.A. Jones, A. Dalby and C.-Y. Tsai. 1976. Genetic regulation of storage protein content in maize endosperm. Biochem. Genetics 14: 641–650.CrossRefGoogle Scholar
  48. 48.
    Jones, R.A., B.A. Larkins and C.-Y. Tsai. 1977. Storage protein synthesis in maize. II. Reduced synthesis of a major zein component by the opaque-2 mutant of maize. Plant Physiol. 59: 525–529.PubMedCrossRefGoogle Scholar
  49. 49.
    Wilson, C.M. 1978. Some biochemical indicators of genetic and developmental controls in endosperm. In: Maize Breeding and Genetics. ( D.B. Walden, ed.), John Wiley & Sons, ( New York, NY ), pp. 405–419.Google Scholar
  50. 50.
    Lambert, R.J., D.E. Alexander and J.W. Dudley. 1969. Relative performance of normal and modified protein (opaque-2) maize hybrids. Crop Sci. 9: 242–243.CrossRefGoogle Scholar
  51. 51.
    Brown, W.L. 1975. Worldwide industry experience with opaque-2 maize. In: High Quality Protein Maize. ( L.F. Bauman, E.T. Mertz, A. Caballo and E.W. Sprague, eds.) Dowden, Hutchinson and Ross, Inc. ( Stroudsburg, PA ), pp. 256–264.Google Scholar
  52. 52.
    Arnold, J.M., L.F. Bauman and D. Makonnen. 1977. Physical and chemical kernel characteristics of normal and opaque-2 endosperm maize hybrids. Crop Sci. 17: 362–366.CrossRefGoogle Scholar
  53. 53.
    Baenziger, P.S. and D.V. Glover. 1979. Dry matter accumulation in maize hybrids near isogenic for endosperm mutants conditioning protein quality. Crop Sci. 19: 345–349.CrossRefGoogle Scholar
  54. 54.
    Dalby, A. and C.-Y. Tsai. 1974. Zein accumulation in phenotypically modified lines of opaque-2 maize. Cereal Chem. 51: 821–825.Google Scholar
  55. 55.
    Vasai, S.K. 1975. Use of genetic modifiers to obtain normal-type kernels with the opaque-2 gene. In: High-Quality Protein Maize. (L.F.aliauman, E.T. Mertz, V. Caballo and E.W. Sprague, eds.), Dowden, Hutchinson and Ross, Inc. ( Stroudsburg, PA ), pp. 197–216.Google Scholar
  56. 56.
    Loesch, P.J. Jr., W.J. Wiser and G.D. Booth. 1978. Emergence comparisons between opaque and normal segregates in two maize synthetics. Crop Sci. 18: 802–805.CrossRefGoogle Scholar
  57. 57.
    Dudley, J.W., R.J. Lambert and D.E. Alexander. 1974. Seventy generations of selection for oil and protein concentration in the maize kernel. In: Seventy Generations of Selection for Oil aria - Protein in Maize. ( J.W. Dudley, ed.) Crop Science Society of America, ( Madison, WI ), pp. 181–212.Google Scholar
  58. 58.
    Creech, R.G. and D.E. Alexander. 1978. Breeding for industrial and nutritional quality in maize. In: Maize Breeding and Genetics. (D.B. Walden, edTT, John Wiley & Sons (New York, NY), pp. 249–264.Google Scholar
  59. 59.
    Bauman, L.F., T.F. Conway and S.A. Watson. 1963. Heritability of variations in oil content of individual corn kernels. Science 139: 498–499.PubMedCrossRefGoogle Scholar
  60. 60.
    Alexander, D.E., L.S. Silvela, F.I. Collins and R.C. Rodgers. 1967. Analysis of oil content of maize by wide-line NMR. J. Amer. Oil Chem. Soc. 44: 555–558.CrossRefGoogle Scholar
  61. 61.
    Watson, S.A. and J.E. Freeman. 1975. Breeding corn for increased oil content. In: Proc. 30th Ann. Corn and Sorghum Res. Conf., Amer. Seed Trade Assoc.-TWisET DC), pp. 251–7Google Scholar
  62. 62.
    Nordstrum, J..W., B.R. Behrends, R.J. Meade and E.H. Thompson. 1972. Effects of feeding high oil corns to growing-finishing swine. J. Animal Sci. 25: 357–361.Google Scholar
  63. 63.
    Lynch, P.B., D.H. Baker, B.G. Harmon and A.H. Jensen. 1972. Feeding value for growing-finishing swine of corns of different oil contents. J. Animal Sci. 35: 1108.Google Scholar
  64. 64.
    Hymowitz, T., J.W. Dudley, F.I. Collins and C.M. Brown. 1974. Estimation of protein and oil concentration in corn, soybean and oat seed by near-infrared light reflectance. Crop Sci. 14: 713–715.CrossRefGoogle Scholar
  65. 65.
    Reiners, R.A. and C.M. Gooding. 1970. Corn oil. In: Corn: Culture, Processing, Products. ( G.E. Inglett, ed.) Avi Publ. Co. ( Westport, CT ), pp. 241–261.Google Scholar
  66. 66.
    Weiss, T.J. 1970. Food Oils and Their Uses. Avi Publ. Co. (Westport, CT).Google Scholar
  67. 67.
    Morrison, W.H., III and J.A. Robertson. 1978. Hydrogenated sunflower oil: oxidative stability and polymer formation on heating. J. Amer. Oil Chem. Soc. 55: 451–453.CrossRefGoogle Scholar
  68. 68.
    Ho, C.-T., M.S. Smagula and S.S. Chang. 1978. The synthesis of 2-(1-pentenyl) furan and its relationship to the reversion flavor of soybean oil. J. Amer. Oil Chem. Soc. 55: 233–237.CrossRefGoogle Scholar
  69. 69.
    Weber, E.J. 1978. Corn lipids. Cereal Chem. 55: 572–584.Google Scholar
  70. 70.
    Albrink, M.J. 1974. Serum lipids, diet and cardiovascular disease. Postgrad. Med. 55: 87–92.PubMedGoogle Scholar
  71. 71.
    West, C.E. and T.G. Redgrave. 1974. Reservations on the use of polyunsaturated fats in human nutrition. Search 5: 90–94.Google Scholar
  72. 72.
    Kummerow, F.A. 1975. Lipids in atherosclerosis. J. Food Sci. 40: 12–17.CrossRefGoogle Scholar
  73. 73.
    Kaunitz, H. 1976. Biological effects of trans fatty acids. Z. Ernährungswiss. 15: 26–33.PubMedGoogle Scholar
  74. 74.
    Jellum, M.D. 1970. Plant introductions of maize as a source of oil with unusual fatty acid composition. J. Agr. Food Chem. 18: 365–370.CrossRefGoogle Scholar
  75. 75.
    Poneleit, C.G. and D.E. Alexander. 1965. Inheritance of linoleic and oleic acids in maize. Science 147: 1585–1586.PubMedCrossRefGoogle Scholar
  76. 76.
    Poneleit, C.G. and L.F. Bauman. 1970. Diallel analyses of fatty acids in corn (Zea mays L.) oil. Crop Sci. 10: 338–341.CrossRefGoogle Scholar
  77. 77.
    de la Roche, I.A., D.E. Alexander and E.J. Weber. 1971. Inheritance of oleic and linoleic acids in Zea mays L. Crop Sci. 11: 856–859.CrossRefGoogle Scholar
  78. 78.
    Widstrom, N.W. and M.D. Jellum. 1975. Inheritance of kernel fatty acid composition among six maize inbreds. Crop Sci. 15: 44–46.CrossRefGoogle Scholar
  79. 79.
    Jellum, M.D. and J.E. Marion. 1966. Factors affecting oil content and oil composition of corn (Zea mays L.) grain. Crop Sci. 6: 41–42.CrossRefGoogle Scholar
  80. 80.
    Jahn-deesbach, W., R. Marquard and M. Heil. 1975. Investigations concerning fat quality in corn of German derivation with special consideration of linoleic acid content. Z. Lebensm. Unters. Forsch. 159: 271–278.PubMedCrossRefGoogle Scholar
  81. 81.
    Brockerhoff, H. 1966. A stereospecific analysis of triglycerides. J. Lipid Res. 6: 10–15.Google Scholar
  82. 82.
    Lands, W.E.M., R.A. Pieringer, P.M. Slakey and A. Zschocke. 1966. A micro-method for stereospecific determination of triglyceride structure. Lipids 1: 444–448.PubMedCrossRefGoogle Scholar
  83. 83.
    Brockerhoff, H., R.J. Hoyle and N. Wolmark. 1966. Positional distribution of fatty acids in triglycerides of animal depot fats. Biochim. Biophys. Acta 116: 67–72.PubMedGoogle Scholar
  84. 84.
    Brockerhoff, H., R.J. Hoyle, P.C. Hwang and C. Litchfield. 1968. Positional distribution of fatty acids in depot fat of aquatic animals. Lipids 3: 24–29.PubMedCrossRefGoogle Scholar
  85. 85.
    Brockerhoff, H. and M. Yurkowski. 1966. Stereospecific analysis of several vegetable oils. J. Lipid Res. 7: 62–64.PubMedGoogle Scholar
  86. 86.
    Weber, E.J., I.A. de la Roche and D.E. Alexander. 1971. Stereospecific analysis of maize triglycerides. Lipids 6: 525–530.CrossRefGoogle Scholar
  87. 87.
    de la Roche, I.A., E.J. Weber and D.E. Alexander. 1971. Effects of fatty acid concentration and positional specificity on maize triglyceride structure. Lipids 6: 531–536.CrossRefGoogle Scholar
  88. 88.
    Sahasrabudhe, M.R. and I.G. Farn. 1964. EFfect of heat on triglycerides of corn oil. J. Amer. Oil Chem. Soc. 41: 264–267.CrossRefGoogle Scholar
  89. 89.
    Raghuveer, K.G. and E.G. Hammond. 1967. The influence of glyceride structure on the rate of autoxidation. J. Amer. Oil Chem. Soc. 44: 239–243.CrossRefGoogle Scholar
  90. 90.
    Catalano, M., M. de Felice and V. Sciancalepore. 1975. Autoxidation of monounsaturated triglycerides. Influence of the fatty acid position. Ind. Aliment. 14: 89–92.Google Scholar
  91. 91.
    Drozdowski, B. 1977. Effect of the unsaturated acyl position in triglycerides on the hydrogenation rate. J. Amer. Oil Chem. Soc. 54: 600–603.CrossRefGoogle Scholar
  92. 92.
    Raghavan, S.S. and J. Ganguly. 1969. Studies on the positional integrity of glyceride fatty acids during digestion and absorption in rats. Biochem. J. 113: 81–87.PubMedGoogle Scholar
  93. 93.
    Simon, E.W. 1974. Phospholipids and plant membrane permeability. New Phytologist 73: 377–420.CrossRefGoogle Scholar
  94. 94.
    Gubbels, G.H. 1974. Growth of corn seedlings under low temperature as affected by genotype, seed size, total oil and fatty acid content of the seed. Can. J. Plant Sci. 54: 425–426.CrossRefGoogle Scholar
  95. 95.
    de Silva, N.S., P. Weinberger, M. Kates and I.A. de la Roche. 1975. Comparative changes in hardiness and lipid composition in two near-isogenic lines of wheat (spring and winter) grown at 20C and 240C. Can. J. Bot. 53: 1899–1905.CrossRefGoogle Scholar
  96. 96.
    Thorsteinson, A.J. and J.K. Nayar. 1963. Plant phospholipids as feeding stimulants for grasshoppers. Can. J. Zool. 41: 931–935.CrossRefGoogle Scholar
  97. 97.
    Wu, G.-S., R.A. Stein and J.F. Mead. 1979. Autoxidation of fatty acid monolayers adsorbed on silica gel. IV. Effects of antioxidants. Lipids 14: 644–650.CrossRefGoogle Scholar
  98. 98.
    Coe, E.H., Jr. and M.G. Neuffer. 1977. The genetics of corn. In: Corn and Corn Improvement. ( G.F. Sprague, ed.) Amer. Soc. of Agronomy, Inc. ( Madison, WI ), pp. 111–223.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Evelyn J. Weber
    • 1
  1. 1.University of IllinoisU.S. Department of AgricultureUrbanaUSA

Personalised recommendations