Concern about heat transfer effects in teeth began in a formal way in the 1930s and 1940s. This coincided with the development of higher and higher speed dental drills that aided quick removal of carious formations. As drill speeds increased and bur-cooling options become more numerous, specific evaluations were made of the resulting effects on teeth.


Heat Transfer Heat Transfer Coefficient Tooth Enamel Human Tooth Pulp Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mandel, I. E., Dental caries, Am. Sci. 67, 680–688, 1979.ADSGoogle Scholar
  2. 2.
    Sicher, H. Orban’s Oral Histology and Embryology, 6th ed. ( C. V. Mosby, St. Louis, 1966 ).Google Scholar
  3. 3.
    Brown, W. S., Dewey, W. A., and Jacobs, H. R., Thermal properties of teeth, J. Dent. Res. 49, 752–755, 1970.CrossRefGoogle Scholar
  4. 4.
    Craig, R. G., and Peyton, F. A., Thermal conductivity of tooth structure, dental cements, and amalgam, J. Dent. Res. 40, 411–418, 1961.CrossRefGoogle Scholar
  5. 5.
    Soyenkoff, B. C., and Okum, J. H., Thermal conductivity measurements of dental tissues with the aid of thermistors, J. Am. Dent. Assoc. 57, 23–30, 1958.Google Scholar
  6. 6.
    Lisanti, V. F., and Zander, H. A., Thermal conductivity of dentin, J. Dent. Res. 29, 493–497, 1950.CrossRefGoogle Scholar
  7. 7.
    Heithersay, G. S., and Brannstrom, M., Observations on heat-transmission experiments with dentin, 1. Laboratory study, J. Dent. Res. 42, 1140–1145, 1963.CrossRefGoogle Scholar
  8. 8.
    Stanford, J. W., Paffenbarger, G. C., Kumpula, J. W., and Sweeney, W. T., Determination of some compressive properties of human enamel and dentin, J. Am. Dent. Assoc. 57, 487–492, 1958.Google Scholar
  9. 9.
    Lehman, M. L., Tensile strength of human dentin, J. Dent. Res. 46, 197–201, 1967.CrossRefGoogle Scholar
  10. 10.
    Craig, R. G., Peyton, F. A., and Johnson, D. W., Compressive properties of enamel, dental cements, and gold, J. Dent. Res. 40, 936–945, 1961.CrossRefGoogle Scholar
  11. 11.
    Craig, R. G., and Peyton, F. A., Elastic and mechanical properties of human dentin, J. Dent. Res. 37, 710–718, 1958.CrossRefGoogle Scholar
  12. 12.
    McGinley, M. B., Lloyd, B. A., Despain, R. R., and Brown, W. S., Tensile strength of enamel, IADR Abstracts 1972,no. 871.Google Scholar
  13. 13.
    Bowen, R. L., and Rodriguez, M. M., Tensile strength, testing method, and values for some dental materials, J. Dent. Res. 39, 768–769, 1960.Google Scholar
  14. 14.
    Hannah, C. M., Tensile properties of human enamel and dentin, J. Dent. Res. 50, abstract 113, 1971.Google Scholar
  15. 15.
    Cooper, W. E. G., and Smith, D. C., Determination of the shear strength of enamel and dentin, J. Dent. Res. 47, 997, 1968.Google Scholar
  16. 16.
    Barton, J. A., and Dickson, G., Thermal and hygroscopic dimensional changes of tooth structure, IADR Abstracts 1970, p. 217.Google Scholar
  17. 17.
    Spitzer, D., and Ten Bosch, J. J., The absorption and scattering of light in bovine and human dental enamel, Calcif. Tissue Res. 17, 129–137, 1975.CrossRefGoogle Scholar
  18. 18.
    Boehm, R., Baechler, T., Webster, J., and Janke, S., Laser processes in preventive dentistry, Opt. Eng. 16, 493–496, 1977.Google Scholar
  19. 19.
    Boehm, R. F., and Gregory, R. W., An estimation of the optical properties of human tooth enamel in the visible wavelength region, AIAA paper 36. 75–714, 1975.Google Scholar
  20. 20.
    Fowler, B. O., National Institute for Dental Research, private communication, 1972.Google Scholar
  21. 21.
    Lisanti, V., and Zander, H., Thermal injury to normal dog teeth: in vivo measurements of pulp temperature increases and their effect on the pulp tissue, J. Dent. Res. 31, 548–558, 1952.CrossRefGoogle Scholar
  22. 22.
    Zach, L., and Cohen, G., Pulp response to externally applied heat, Oral Surg. Oral Med. Oral Pathol. 19, 515–530, 1965.CrossRefGoogle Scholar
  23. 23.
    Boehm, R. F., Chen, M. J., and Blair, C. K., Temperatures in human teeth due to laser heating, ASME paper 75-WA/Bio-8, 1975.Google Scholar
  24. 24.
    Delbalso, A. M., and Todd, M. J., The effects of thermal injury on pulpal hydrolases, Oral Surg. 40, 801–803, 1975.CrossRefGoogle Scholar
  25. 25.
    Matthews, B., Cold-sensitive and heat-sensitive nerves in teeth, J. Dent. Res. 47, 974–975, 1968.Google Scholar
  26. 26.
    Naylor, M. N., Studies on the mechanism of sensation to cold stimulation of human dentin, in Sensory Mechanisms in Dentin, D. J. Anderson, ed. ( Pergamon, Oxford, Eng., 1963 ).Google Scholar
  27. 27.
    Seldon, H. S., Periapical temperatures of teeth undergoing endodontie therapy, J. Dent. Res. 45, 1424–1429, 1966.CrossRefGoogle Scholar
  28. 28.
    Mukherjee, S., The temperature of the gingival sulci, J. Periodontol. 49, 580–584, 1978.Google Scholar
  29. 29.
    Van Hassel, H. J., and Brown, A. C., Effect of temperature changes on intrapulpal pressure and hydraulic permeability in dogs, Arch. Oral Biol. 14, 301–315, 1969.CrossRefGoogle Scholar
  30. 30.
    Brown, A. C., and Goldberg, M. P., Surface temperature and temperature gradients of human teeth in situ, Arch. Oral Biol. 11, 973–983, 1966.CrossRefGoogle Scholar
  31. 31.
    Newton, A. V., and Mumford, J. M., Thermal flow through human teeth, Dent. Practit. 23. 84–86, Nov. 1970.Google Scholar
  32. 32.
    Jarby, S., On temperature measurements in teeth, Odonto. Tids. 66, 421–471, 1958.Google Scholar
  33. 33.
    Jacobs, H. R., Thompson, R. E., and Brown, W. S., Heat transfer in teeth, J. Dent. Res. 52, 248–252, 1973.CrossRefGoogle Scholar
  34. 34.
    Boehm, R. F., Thermal environment of teeth during open-mouth respiration, J. Dent. Res. 52, 75–78, 1972.Google Scholar
  35. 35.
    Braden, M., Heat conduction in normal human teeth, Arch. Oral Biol. 9, 479–486, 1964.CrossRefGoogle Scholar
  36. 36.
    Jacobs, H. R., Brown, W. S., and Ting, V. C., Influences of heat transfer on teeth, ASME paper 71-WA/HT-30, 1971.Google Scholar
  37. 37.
    Takahashi, N., Kitagami, T., and Komori, T., Evaluation of thermal change in pulp chamber, J. Dent. Res. 56, 1480, 1977.CrossRefGoogle Scholar
  38. 38.
    Lloyd,. B. A., McGinley, M. G., and Brown, W. S., Thermal stress in teeth, J. Dent. Res. 57, 571–582, 1978.CrossRefGoogle Scholar
  39. 39.
    Peultier, N., and Frank, R. M., Effects of thermal shocks on human dental enamel, J. Dent. Res. 46, 1249, 1967.Google Scholar
  40. 40.
    Brown, W. S., Thompson, R. E., and Jacobs, H. R., Thermal fatigue in teeth, J. Dent. Res. 51, 461–467, 1972.CrossRefGoogle Scholar
  41. 41.
    Robinson, H. B. G., and Lefkowitz, W., Operative dentistry and the pulp, J. Prosthet. Dent. 12, 985–1001, 1962.CrossRefGoogle Scholar
  42. 42.
    Stanley, H. R., Pulpal response to dental techniques and materials, Dent. Clin. North Am. 15, 115–126, 1971.Google Scholar
  43. 43.
    Aplin, A. W., Sorenson, F. M., and Cantwell, K. R., Method for measuring temperature changes in the tooth during restorative procedures, J. Dent. Res. 42, 925–933, 1963.CrossRefGoogle Scholar
  44. 44.
    Sorenson, F. M., Cantwell, K. R., and Aplin, A. W., Thermogenics in cavity preparation using air turbine handpieces: the relationship of heat transferred to rate of tooth structure removal, J. Prosthet. Dent. 14, 524–532, 1964.CrossRefGoogle Scholar
  45. 45.
    Sorenson, F. M., Phatak, N. M., and Everett, F. G., Thermal pulp tester: a new instrument, J. Dent. Res. 41, 961–965, 1962.CrossRefGoogle Scholar
  46. 46.
    Walsh, J. P., and Symmons, H. F., A comparison of the heat production and mechanical efficiency of diamond instruments, stones, and burs at 3,000 and 60,000 rpm, N. Z. Dent. J. 45, 28, 1949.Google Scholar
  47. 47.
    Hudson, D., and Sweeney, W., Temperatures developed in rotating dental-cutting instruments, J. Am. Dent. Assoc. 47, 127–133, 1954.Google Scholar
  48. 48.
    Peyton, F. A., Temperature rise in teeth developed by rotating instruments, J. Am. Dent. Assoc. 50, 629–632, 1955.Google Scholar
  49. 49.
    Vaughn, R. C., and Peyton, F. A., The influence of rotational speed on temperature rise during cavity preparation, J. Dent. Res. 30, 737–744, 1951.CrossRefGoogle Scholar
  50. 50.
    Wheatcroft, M. G., Harnett, J. E., and Smith, W. F., Tooth pulp temperature changes produced by cutting with air-turbine handpieces, J. Dent. Res. 39, 753, 1960.Google Scholar
  51. 51.
    Eames, W. B., and Nale, J. L., A comparison of cutting efficiency of air-driven fissure burs, J. Am. Dent. Assoc. 86, 412–415, 1973.Google Scholar
  52. 52.
    Lloyd, B. A., Christensen, D. O., Jacobs, H. R., and Brown, W. S., Heat transfer in teeth during restoration, Annual meeting, American Institute of Chemical Engineers, Philadelphia, Nov. 1973.Google Scholar
  53. 53.
    Brown, W. S., Christensen, D. O., and Lloyd, B. A., Numerical and experimental evaluation of energy inputs, temperature gradients, and thermal stresses during restorative procedures, J. Am. Dent. Assoc. 96, 451–458, 1978.Google Scholar
  54. 54.
    Kawahara, H., and Yamagami, A., In vitro studies of cellular responses to heat and vibration in cavity preparation, J. Dent. Res. 49, 829–835, 1970.CrossRefGoogle Scholar
  55. 55.
    Aplin, A. W., Sorenson, F. M., and Cantwell, K. R., Thermogenics in cavity preparation using the air-turbine handpiece, J. Dent. Res. 40, 769, 1961.Google Scholar
  56. 56.
    Bhaskar, S. N., and Lilly, G. E., Intrapulpal temperature during cavity preparation, J. Dent. Res. 44, 644–647, 1965.CrossRefGoogle Scholar
  57. 57.
    Schuchard, A., Surface temperature response by use of air coolant in restorative procedures, J. Am. Dent. Assoc. 75, 1188–1193, 1967.Google Scholar
  58. 58.
    Crawford, W. H., Thermodynamics in cavity preparations, N.W. Dentistry 296–302, Sept. 1957.Google Scholar
  59. 59.
    Peyton, F. A., Effectiveness of water coolants with rotary-cutting instruments, J. Am. Dent. Assoc. 56, 664–675, 1958.Google Scholar
  60. 60.
    Schuchard, A., and Watkins, C., Temperature response to increased rotational speeds, J. Dent. Res. 39, 738, 1960.Google Scholar
  61. 61.
    Zach, L., and Cohen, G., Thermogenesis in operative technics: comparison of four methods, J. Prosthet. Dent. 12, 977, 1962.CrossRefGoogle Scholar
  62. 62.
    Schuchard, A., and Watkins, C. E., Thermal and histologic response to high-speed and ultrahigh-speed cutting in tooth structure, J. Am. Dent. Assoc. 71, 1451–1458, 1965.Google Scholar
  63. 63.
    Woods, R. M., and Dilts, W. E., Temperature changes associated with various dental-cutting procedures, J. Can. Dent. Assoc. 35, 311–315, 1969.Google Scholar
  64. 64.
    Hamilton, I. A., and Kramer, I. R., Cavity preparation with and without waterspray, Br. Dent. J. 123, 281–285, 1967.Google Scholar
  65. 65.
    Carlton, M. L., Jr., and Dorman, H. L., Comparison of dentin and pulp temperatures during cavity preparation, Tex. Dent. J. 87, 7–8, 1969.Google Scholar
  66. 66.
    Pinsky, L. D., The coolant controversy in operative dentistry, Wis. State Dent. Soc. 47, 279–282, 1971.Google Scholar
  67. 67.
    Lloyd, B. A., Rich, J. A., and Brown, W. S., Effect of cooling techniques on temperature control and cutting rate for high-speed dental drills, J. Dent. Res. 57, 675–684, 1978.CrossRefGoogle Scholar
  68. 68.
    Kasloff, A., Cracks in tooth structure associated with rotary-cutting instruments, J. Dent. Res. 40, 769, 1961.Google Scholar
  69. 69.
    Kasloff, A., A continuing study of cracks in teeth associated with various rotary-cutting instruments, J. Can. Dent. Assoc. 28, 244, 1962.Google Scholar
  70. 70.
    Kasloff, Z., Enamel cracks caused by rotary instruments, J. Prosthet. Dent. 14, 109–116, 1964.CrossRefGoogle Scholar
  71. 71.
    Grajower, R., Kaufman, E., and Stern, N., Temperature of full-crown preparations with modelling compound, J. Dent. Res. 54, 212–217, 1975.Google Scholar
  72. 72.
    Jarby, S., and Dansgaard, W., The thermal effects of different operations on teeth, Odonto, Tids. 67, 207–240, 1959.Google Scholar
  73. 73.
    Plant, C. G., Jones, D. W., and Darvell, B. W., The heat evolved and temperatures attained during setting of restorative materials, Br. Dent. J. 137, 233–238, 1974.CrossRefGoogle Scholar
  74. 74.
    Braden, M., Heat conduction in teeth and efficiency of lining materials, J. Dent. Res. 42, 1084, 1963.Google Scholar
  75. 75.
    Braden, M., Heat conduction in teeth and the effects of lining materials, J Dent. Res. 43, 315–316, 1964.CrossRefGoogle Scholar
  76. 76.
    Sorenson, F. M., Aplin, A. W., and Cantwell, K. R., Preliminary studies on thermal production by some commonly used polishing procedures in dentistry, J. Dent. Res. 40, 769, 1961.Google Scholar
  77. 77.
    Christensen, G. J., and Dilts, W. E., Thermal change during dental polishing, J. Dent. Res. 47, 690–693, 1968.CrossRefGoogle Scholar
  78. 78.
    Grajower, R., Kaufman, E., and Rajstein, J., Temperature in the pulp chamber during polishing of amalgam restorations, J. Dent. Res. 53, 1189–1195, 1974.CrossRefGoogle Scholar
  79. 79.
    Wittrock, J. W., Morrant, G. A., and Davies, E. H., A study of temperature changes during removal of amalgam restorations, J. Prosthet. Dent. 34, 179–186, 1975.CrossRefGoogle Scholar
  80. 80.
    Roydhouse, R. H., and Paxon, P. R., Thermal changes in dimension of restorative cavities, J. Dent. Res. 49, 567–571, 1970.CrossRefGoogle Scholar
  81. 81.
    Guzman, H. J., Swartz, M. L., and Phillips, R. W., Marginal leakage of dental restorations subjected to thermal stress, J. Prosthet. Dent. 21, 166–175, 1969.CrossRefGoogle Scholar
  82. 82.
    Bounocore, M. G., Caries prevention in pits and fissures sealed with an adhesive resin polymerized by ultraviolet light: a two-year study of a single adhesive application, J. Am. Dent. Assoc. 82, 1091–1093, 1971.Google Scholar
  83. 83.
    Von Fraunhofer, J. A., and Williams, B., Heat liberation during the setting of four fissure sealants, Br. Dent. J. 136, 498–499, 1974.CrossRefGoogle Scholar
  84. 84.
    Stern, R., Dentistry and the laser, Laser Applications in Medicine and Biology, vol. 2, M. L. Wolbarsht, ed. (Plenum, New York, 1974 ).Google Scholar
  85. 85.
    Boehm, R., Rich, J., Webster, J., and Janke, S. Thermal stress effects and surface cracking associated with laser use on human teeth, J. Biomech. Eng. 99, 189–194, 1977.CrossRefGoogle Scholar
  86. 86.
    Boehm, R. F., Development of new processes for preventive dentistry, final report, grant DE0554, National Institute of Dental Research, Oct. 1, 1978.Google Scholar
  87. 87.
    McClure, Frank, Water Fluoridation: The Search and The Victory (Washington, D.C.: U.S. Department of Health, Education and Welfare, 1970 ).Google Scholar
  88. 88.
    Baechler, T. K., Diffusion with chemical reaction: fluoride incorporation in tooth enamel ( Ph.D. diss., University of Utah, 1976 ).Google Scholar
  89. 89.
    Putt, M. S., Beltz, J. F., and Muhler, J. C., Effect of temperature of SnF2 solution on tin and fluoride uptake by bovine enamel, J. Dent. Res. 57, 772–776, 1978.CrossRefGoogle Scholar
  90. 90.
    Ozisik, M. N., Heat Conduction ( Wiley, New York, 1980 ).Google Scholar
  91. 91.
    Arpaci, V. S., Conduction Heat Transfer ( Addison-Wesley, Reading, MA, 1966 ).MATHGoogle Scholar
  92. 92.
    Carslaw, H. S., and Jaeger, J. S., Conduction of Heat in Solids, 2nd ed. ( Oxford, London, 1959 ).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • R. F. Boehm
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations