Advertisement

Heat and Water Transport in the Human Respiratory System

  • P. W. Scherer
  • L. M. Hanna

Abstract

The warming and humidification of inspired air in the human respiratory tract, often called respiratory air conditioning, is a well-controlled and remarkably stable process necessary for maintaining life. An understanding of heat and water movement from the underlying blood vessels to and from the air flowing in the respiratory passageways, the problem addressed in this chapter, requires the application of knowledge and techniques from both the biological and physical sciences. Complete understanding of this process and its relationship to other functions of the respiratory tract is still a distant goal.

Keywords

Airway Wall Bronchial Tree Water Vapor Transport Blood Temperature Human Respiratory Tract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dalhamn, T., Mucous flow and ciliary activity in the trachea of healthy rats and rats exposed to respiratory irritant gases, Acta Physiol. Scand. Suppl. 36, 123, 1956.Google Scholar
  2. 2.
    Keal, E. E., Physiological and pharmacological control of airway secretions, in Respiratory Defense Mechanisms, vol. 5, pt. 1, J. D. Brain, D. F. Proctor, and L. M. Reid, eds. ( New York: Marcel Dekker, 1979 ).Google Scholar
  3. 3.
    Sturgess, J. M., Mucous secretions in the respiratory tract, Pediatr. Clin. North Am. 26, 481–501, 1979.Google Scholar
  4. 4.
    Yaeger, H., Jr., Tracheobronchial secretions, Am. J. Med. 50, 493–509, 1971.CrossRefGoogle Scholar
  5. 5.
    Litt, M., Mucus rheology, Arch. Intern. Med. 126, 417–423, 1970.CrossRefGoogle Scholar
  6. 6.
    Litt, M., Mucus rheology and mucociliary clearance, Mod. Prob. Pediatr. 19, 175–181, 1977.Google Scholar
  7. 7.
    Sleigh, M. A., The nature and action of respiratory tract cilia, in Respiratory Defense Mechanisms, vol. 5, pt. 1, J. D. Brain, D. F. Proctor, and L. M. Reid, eds. ( New York: Marcel Dekker, 1979 ).Google Scholar
  8. 8.
    Widdicombe, J. G., Defense mechanisms of the respiratory system, Resp. Physiol. II 14, 292–354, 1977.Google Scholar
  9. 9.
    Horstmann, G., Iravani, J., Melville, G. N., and Richter, H. G., Influence of temperature and decreasing water content of inspired air on the ciliated bronchial epithelium, Acta Oto-Laryngol. 84, 124–131, 1977.CrossRefGoogle Scholar
  10. 10.
    Widdicombe, J. G., Respiratory reflexes and defense, in Respiratory Defense Mechanisms, vol. 5, pt. 2, J. D. Brain, D. F. Proctor, and L. M. Reid, eds. ( New York: Marcel Dekker, 1979 ).Google Scholar
  11. 11.
    Proctor, D. F., and Swift, D. L., Temperature and water vapor adjustment, in Respiratory Defense Mechanisms, vol. 5, pt. 1, J. D. Brain, D. F. Proctor, and L. M. Reid, eds. ( New York: Marcel Dekker, 1979 ).Google Scholar
  12. 12.
    Hollinshead, W. H., Textbook of Anatomy, 3d ed. ( New York: Harper and Row, 1974 ).Google Scholar
  13. 13.
    Warwick, R., and Williams, P. L., eds., Gray’s Anatomy, 3d ed. ( Philadelphia. W. B. Saunders, 1973 ).Google Scholar
  14. 14.
    Weibel, E. R., Morphometry of the Human Lung ( Berlin: Springer-Verlag, 1963 ).Google Scholar
  15. 15.
    Dekker, E., Transition between laminar and turbulent flow in the human trachea, J. Appl. Physiol. 16, 1060–1064, 1961.Google Scholar
  16. 16.
    Olson, D. E., Iliff, L. D., and Sudlow, M. F., Some aspects of the physics of flow in the central airways, Bull. Physiol. Path. 8, 391–408, 1972.Google Scholar
  17. 17.
    Horsfield, K., and Cumming, G., Morphology of the bronchial tree in man, J. Appl. Physiol. 24, 229–231, 1968.Google Scholar
  18. 18.
    Cole, P., Recordings of respiratory air temperature, J. Laryng. 68, 295–307, 1954.Google Scholar
  19. 19.
    Ingelstedt, S., Studies on the conditioning of air in the respiratory tract, Acta Oto-Laryngol. Suppl. 131, 1956.Google Scholar
  20. 20.
    Webb, P., Air temperature in respiratory tracts of resting subjects in cold, J. Appl. Physiol. 4, 378–382, 1951.Google Scholar
  21. 21.
    Jeffrey, P. K., and Reid, L. M., The respiratory mucous membrane, in Respiratory Defense Mechanisms, vol. 5, pt. 1, J. D. Brain, D. F. Proctor, and L. M. Reid, eds. ( New York: Marcel Dekker, 1979 ).Google Scholar
  22. 22.
    Lopez-Vidriero, M. T., Das, T., and Reid, L. M., Airway secretion: source, biochemical and rheological properties, in Respiratory Defense Mechanisms, vol. 5, pt. 1, J. D. Brain, D. F. Proctor, and L. M. Reid, eds. ( New York: Marcel Dekker, 1979 ).Google Scholar
  23. 23.
    Reid, L., An experimental study of hypersecretion of mucus in the bronchial tree, Br. J. Exp. Pathol. 44, 437–445, 1963.Google Scholar
  24. 24.
    Speisman, I. G., Vasomotor responses of the mucosa of the upper respiratory tract to thermal stimuli, Am. J. Physiol. 115, 181–187, 1936.Google Scholar
  25. 25.
    Mudd, S., Grant, S. B., and Goldman, A., The etiology of acute inflammations of the nose, pharynx, and tonsils, J. Lab. Clin. Med. 6, 253–275, 1921.Google Scholar
  26. 26.
    Dawes, J. D. K., and Prichard, M. M. L., Studies of the vascular arrangements of the nose, J. Anat. 87, 311–322, 1953.Google Scholar
  27. 27.
    Drettner, B., Blood vessel reactions in the nasal mucosa, Int. Rhinol. 1, 40, 1963.Google Scholar
  28. 28.
    Malcolmson, K. G., The vasomotor activities of the nasal mucous membranes, J. Laryngol. Proc. 73, 73, 1959.Google Scholar
  29. 29.
    Rubenstein, E., Pardee, R. C., and Eldridge, F., Alveolar-capillary temperature, J. Appl. Physiol. 15, 10–12, 1969.Google Scholar
  30. 30.
    Magno, M., and Fishman, A. P., private communication.Google Scholar
  31. 31.
    Proctor, D. F., Historical background, in Respiratory Defense Mechanisms, vol. 5, pt. 1, J. D. Brain, D. F. Proctor, and L. M. Reid, eds. ( New York: Marcel Dekker, 1979 ).Google Scholar
  32. 32.
    Cole, P., Further observations on the conditioning of respiratory air, J. Laryngol. 67, 669–681, 1953.Google Scholar
  33. 33.
    Dery, R., Pelletier, J., Jacques, A., Clavet, M., and Houde, J. J., Humidity in anesthesiology, III: Heat and moisture patterns in the respiratory tract during anesthesia with the semiclosed system, Can. Anaesth. Soc. J. 14, 287–298, 1967.CrossRefGoogle Scholar
  34. 34.
    Walker, J. E. C., Wells, R. E., Jr., and Merrill, E. W., Heat and water exchange in the respiratory tract, Am. J. Med. 30, 259–267, 1961.CrossRefGoogle Scholar
  35. 35.
    Cramer, I. I., Heat and moisture exchange of respiratory mucous membrane, Ann. Otol. Rhin. Laryng. 66, 327–343, 1957.Google Scholar
  36. 36.
    Seeley, F. E., Study of changes in temperature and water vapor content of respiratory air in the nasal cavity, Heat./Piping/Air Cond. 12, 377–383, 1940.Google Scholar
  37. 37.
    Dery, R., The evolution of heat and moisture in the respiratory tract during anesthesia with a nonrebreathing system, Can. Anaesth. Soc. J. 20, 296–309, 1973.CrossRefGoogle Scholar
  38. 38.
    Schmidt-Nielsen, K., Hainsworth, F. R., and Murrish, D. E., Counter-current heat exchange in the respiratory passages: Effect on water and heat balance, Resp. Physiol. 9, 263–273, 1970.CrossRefGoogle Scholar
  39. 39.
    Deal, E. C., Jr., McFadden, E. R., Jr., Ingram, R. H., Jr., Straus, R. H., and Jaeger, J. J., Esophageal temperature during exercise in asthmatic and nonasthmatic subjects, J. Appl. Physiol. 46, 484–490, 1979.Google Scholar
  40. 40.
    Deal, E. C., Jr., McFadden, E. R., Jr., Ingram, R. H., Jr., Straus, R. H., and Jaeger, J. J., Role of respiratory heat exchange in production of exercise-induced asthma, J. Appl. Physiol. 46, 467–475, 1979.Google Scholar
  41. 41.
    Moritz, A. R., and Weislager, J. R., Effects of cold air on the air passages and lungs, Arch. Int. Med. 75, 233–240, 1945.CrossRefGoogle Scholar
  42. 42.
    Cole, P., Respiratory mucosal vascular responses, air conditioning, and thermoregulation, J. Laryngol. 68, 613–622, 1954.Google Scholar
  43. 43.
    Johnson, C. E., Linderoth, L. S., Jr., and Nuckols, M. L., An analysis of sensible respiratory heat exchange during inspiration under environmental conditions of deep diving, ASME Trans. J. Biomech. Eng. 99, 45–53, 1977.CrossRefGoogle Scholar
  44. 44.
    Dery, R., Humidity in anesthesiology, IV: Determination of the alveolar humidity and temperature in the dog, Can. Anaesth. Soc. J. 18, 145–151, 1971.CrossRefGoogle Scholar
  45. 45.
    Ferrus, L., Guenard, H., Vardon, G., and Varene, P., Respiratory water loss, Resp. Physiol. 39, 367–381, 1980.CrossRefGoogle Scholar
  46. 46.
    Green, I. D., and Nesarajah, M. S., Water vapor pressure of end-tidal air of normals and chronic bronchitics, J. Appl. Physiol. 24, 229–231, 1968.Google Scholar
  47. 47.
    Johnson, C. E., and Linderoth, L. S., Jr., Deep diving respiratory heat and mass transfer ( Durham: NC Duke University, 1976 ).Google Scholar
  48. 48.
    Proetz, A. W., Air currents in the upper respiratory tract and their clinical importance, Ann. Otol. Rhinol. Laryngol. 60, 439–467, 1951.Google Scholar
  49. 49.
    Proctor, D. F., Airborne disease and the upper respiratory tract, Bac. Rev. 30, 498–513, 1966.Google Scholar
  50. 50.
    Schreck, R. M., and Mockros, L. F., Fluid dynamics in the upper pulmonary airways, in 3d AIAA Fluid and Plasma Dynamics Conf., Los Angeles, 1970.Google Scholar
  51. 51.
    Schroter, R. C., and Sudlow, M. F., Flow patterns in models of the human bronchial airways, Resp. Physiol. 7, 341–355, 1969.CrossRefGoogle Scholar
  52. 52.
    Haselton, F. R., and Scherer, P. W., Bronchial bifurcations and respiratory mass transport, Science 208, 69–71, 1980.CrossRefADSGoogle Scholar
  53. 53.
    Chen, W. Y., and Horton, D. J., Heat and water loss from the airway and exercise-induced asthma, Respiration 8, 305–313, 1977.CrossRefGoogle Scholar
  54. 54.
    Hilding, A. C., Laryngotracheal damage during intratracheal anesthesia, Ann. Otol. Rhinol. Laryngol. 80, 565, 1971.Google Scholar
  55. 55.
    Fanger, P. O., McNall, P. E., and Nevins, R. G., Predicted and measured heat losses and thermal comfort conditions for human beings, Symposium on Thermal Problems in Biotechnology (New York: ASME, 1968 ).Google Scholar
  56. 56.
    McCutchan, J. W., and Taylor, C. L., Respiratory heat exchange with varying temperature and humidity of inspired air, J. Appl. Physiol. 4, 121–135, 1951.Google Scholar
  57. 57.
    Saidel, G. M., Kruse, K. L., and Primiano, F. P., Jr., Heat and water transport in the trachea, presented at the 73d Annual Meeting of AICHE, Chicago, Nov. 20, 1980.Google Scholar
  58. 58.
    Cole, G. W., and Scott, N. R., A Mathematical model of the dynamic heat transfer from the respiratory tract of a chicken, Bull. Math. Biol. 39, 415–433, 1977.MathSciNetGoogle Scholar
  59. 59.
    Hutchinson, J. C. D., Evaporative cooling in fowls, J. Agric. Sci. 45, 48–59, 1955.CrossRefGoogle Scholar
  60. 60.
    Roper, W. E., Heat and moisture transfer in the avian respiratory system (Ph.D. dissertation, Michigan State University, East Lansing, 1969 ).Google Scholar
  61. 61.
    Seymour, R. S., Convective heat transfer in the respiratory system of panting animals, J. Theor. Biol. 35, 199–127, 1972.CrossRefGoogle Scholar
  62. 62.
    Collins, J. C., Pilkington, T. C., and Schmidt-Nielsen, K., A model of respiratory heat transfer in a small animal, Biophys. J. 11, 886–914, 1971.CrossRefGoogle Scholar
  63. 63.
    Nuckols, M. L., Heat and water transfer in the human respiratory system at hyperbaric conditions (Ph.D. dissertation, Duke University, Durham, NC, 1981 ).Google Scholar
  64. 64.
    Swift, D. L., and Proctor, D. F., Access of air to the upper respiration system, in Respiratory Defense Mechanisms, vol. 5, pt. 1, J. D. Brain, D. F. Proctor, and L. M. Reid, eds. ( New York: Marcel Dekker, 1979 ).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • P. W. Scherer
    • 1
  • L. M. Hanna
    • 1
  1. 1.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations