Laser Irradiation of Tissue

  • A. J. Welch


The rapid development of laser technology has provided the biomedical community with a variety of intense sources of electromagnetic radiation in the visible and infrared spectrum. When laser radiation strikes tissue, it absorbs a portion of the incident energy. The absorbed energy elevates the temperature of the tissue, and if the temperature increase is sufficiently high, irreversible damage, such as enzyme inactivation or protein denaturation, occurs. Further increases in the amount of energy absorbed may burn or even vaporize the tissue. The high-power densities that can be realized with the focused laser beam provide a unique surgical tool for cutting or destroying tissue.


Laser Surgery Heat Conduction Equation Damage Function Vitreous Humor Laser Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cain, C. P., and Welch, A. J., Measured and predicted laser-induced temperature rise in the rabbit fundus, Invest. Ophthal. 13, 60–70, 1974.Google Scholar
  2. 2.
    Siegrnan, A. E., An Introduction to Lasers and Masers ( McGraw-Hill, New York, 1971 ).Google Scholar
  3. 3.
    Laser Focus Buyer’s Guide 16th ed. (with Fiberoptic Communications) (Laser Focus Advanced Technology Publications, Newton, MA, Jan. 1981).Google Scholar
  4. 4.
    Fuller, T. A., The physics of surgical lasers, Lasers Surg. Med. 1, 5–14, 1980.Google Scholar
  5. 5.
    Gibbons, W. D., and Allen, R. G., Retinal damage from long-term exposure to laser radiation, Invest. Ophthal. 16, 521–529, 1977.Google Scholar
  6. 6.
    Polhamus, G. D., In-vivo measurement of long-term laser-induced retinal temperature rise, IEEE Trans. Biomed. Eng. 21, 617–622, 1980.Google Scholar
  7. 7.
    Ham, W. T., Jr., Mueller, H. A., and Sliney, D. H., Retinal sensitivity to damage from short wavelength light, Nature 260, 154–155, 1976.ADSGoogle Scholar
  8. 8.
    Lawwill, T., Crockett, S., and Currier, G., Retinal damage secondary to chronic light exposure, Doc. Ophthal. 44, 379–402, 1977.Google Scholar
  9. 9.
    Marshall, J., Thermal and mechanical mechanisms in laser damage to the retina, Invest. Ophthal. 9, 97–115, 1970.Google Scholar
  10. 10.
    Cleary, S. F., and Hamrick, P. E., Laser-induced acoustic transients in the mammalian eye, J. Acous. Soc. Am. 46, 1037, 1969.ADSGoogle Scholar
  11. 11.
    Sliney, D. H., and Freasier, B. C., Evaluation of optical radiation hazards, Appl. Optics 12, 1–24, 1973.ADSGoogle Scholar
  12. 12.
    Ham, W. T., Mueller, H. A., Goldman, A. I., Newman, B. E., Holland, L. M., and Kuwabara, T., Ocular hazard from picosecond pulses of Nd: Yag laser radiation, Science 148, 362–363, 1974.ADSGoogle Scholar
  13. 13.
    Sliney, D. H., and Wolbarsht, M. L., Safety with Lasers and Other Optical Sources ( Plenum, New York, 1980 ).Google Scholar
  14. 14.
    Kaplan, I., Five years experience with the CO2 laser, in Laser Surgery, vol. 2, I. Kaplan, ed. (Jerusalem Academic, Jerusalem, 1978 ) pp. 355–389.Google Scholar
  15. 15.
    Horch, H. H., McCord, R. C., Schaffer, E., and Rupracht, L., Aspects of laser osteotomy, Proc. Lasers Med. Biol., GSF, Neuherberg, Bericht BPT 5, 40–12, 1977.Google Scholar
  16. 16.
    Morein, G., Bone growth alterations resulting from application of CO2 laser beam to the epiphyseal growth plates, Acta Orthop. Scand. 49, 244–248, 1978.Google Scholar
  17. 17.
    Horch, H. H., Histological and long-term results following laser osteotomy, in Laser Surgery, vol. 2, I. Kaplan, ed. ( Jerusalem Academic, 1978 ), pp. 319–325.Google Scholar
  18. 18.
    Farine, I., and Horoshowski, H., The use of the laser scapel in orthopaedic surgery, in Laser Surgery, vol. 2, I. Kaplan, ed. ( Jerusalem Academic, 1978 ), pp. 351–354.Google Scholar
  19. 19.
    Glantz, G., and Korn, A., The use of the carbon dioxide laser in general surgery, in Laser Surgery, vol. 2, I. Kaplan, ed. ( Jerusalem Academic, 1978 ), pp. 9–16.Google Scholar
  20. 20.
    Nimsakul, N., Nishimura, M., Tanino, R., Osada, M., and Hata, J., Our experiences with the Sharplan 791 CO2 laser, in Laser Surgery, vol. 2, I. Kaplan, ed. (Jerusalem Academic, Jerusalem, 1978 ), pp. 59–75.Google Scholar
  21. 21.
    Kaplan, I., Sharon, U., and Ger, R., The carbon dioxide laser in clinical surgery, in Laser Applications in Medicine and Biology, vol. 2, M. L. Wolbarsht, ed. (Plenum, New York ), pp. 295–308.Google Scholar
  22. 22.
    Hall, R. R., The carbon dioxide laser in nonendoscopic urological surgery, in Laser Surgery, vol. 2, I. Kaplan, ed. ( Jerusalem Academic, 1978 ), pp. 197–202.Google Scholar
  23. 23.
    Barzilay, B., Perlberg, S., and Caine, M., Use of CO2 laser beam for kidney surgery, in Laser Surgery, vol. 2, I. Kaplan, ed. ( Jerusalem Academic, 1978 ), pp. 164–168.Google Scholar
  24. 24.
    Fidler, J. P., Slutzki, S., Shafir, R., znd Bornstein, L. A., Use of carbon dioxide laser for large excisions with minimal blood loss, Plast. Reconstr. Surg. 60, 250–255, 1977.Google Scholar
  25. 25.
    Kaplan, I., ed, Laser Surgery, vol. 2 (Jerusalem Academic, 1978 ).Google Scholar
  26. 26.
    Peled, I., Shohat, B., Gassner, S., and Kaplan, I., Excision of epithelial tumors: CO2 versus conventional methods, Cancer Lett. 2, 41–46, 1976.Google Scholar
  27. 27.
    Aranoff, B. L., CO2 lasers in surgical oncology, in Laser Surgery, vol. 2, I. Kaplan, ed. ( Jerusalem Academic, 1978 ), pp. 133–158.Google Scholar
  28. 28.
    Stellar, S., Levine, N., Ger, R., and Levenson, S. M., Carbon dioxide laser for excision of burn eschars, Lancet 1, 945, 1971.Google Scholar
  29. 29.
    Friedman, E. W., The CO2 laser in head and neck surgery, in Laser Surgery, vol. 2, I. Kaplan, ed. (Jerusalem Academic, 1978 ).Google Scholar
  30. 30.
    Karlin, D. B., Patel, C. K., Wood, O. R., and Rovere, J., CO2 laser in vitreoretinal surgery, Ophth. (Rochester) 86 (2), 290–298, 1979.Google Scholar
  31. 31.
    Peyman, G., and Sanders, D., Full-thickness eye wall resection, in Advances in Uveal Surgery, Vitreous Surgery, and the Treatment of Endophthalmitis, edited by Peyman and Sanders ( Appleton-Century-Crofts, New York, 1975 ).Google Scholar
  32. 32.
    DiBartolomeo, J. R., and Ellis, M., The argon laser in otology, Laryngoscope 90, 1786–1796, 1980.Google Scholar
  33. 33.
    Perkins, C., Laser stapedotomy for otosclerosis, Laryngoscope 90, 228–241, 1980.Google Scholar
  34. 34.
    Escudero, L. H., Castro, A. O., Drumond, M., Porto, S. P., Bozinis, D. G., Penna, A. F., and Gallego-Lleusma, E., Argon laser in hyman tympanoplasty, Arch. Otol. 105, 252–253, 1979.Google Scholar
  35. 35.
    Bellina, J. H., and Polanyi, T. G., Management of vaginal adenosis and related cervicovaginal disorders in DES-exposed progeny by means of carbon dioxide laser surgery, J. Repro. Med. 16, 295–296, 1976.Google Scholar
  36. 36.
    Bellina, J. H., and Seto, Y. J., Pathological and physical investigations into CO2 laser tissue with specific emphasis on cervical intraepithelial neoplasm, Lasers Surg. Med. 1, 47–69, 1980.Google Scholar
  37. 37.
    Burke, L., Covell, L., and Antonioli, D., Carbon dioxide laser therapy of cervical intraepithelial neoplasia: Factors determining success rate, Lasers Surg. Med. 1, 113–122, 1980.Google Scholar
  38. 38.
    Dorsey, J. H., Diggs, E. S., Microsurgical conization of the cervix by carbon dioxide laser, Obstet. Gyn. 54, 565–570, 1979.Google Scholar
  39. 39.
    Baggish, M. S., Carbon dioxide laser treatment for condylomata acuminata venereal infections, Obstet. Gyn. 55, 1980.Google Scholar
  40. 40.
    McCord, R. C., Medical applications of CO2 laser fiber optics, Proc. SPIE 266, 1981.Google Scholar
  41. 41.
    Miller, J. B., and Smith, M. R., Transvitreal carbon dioxide photocautery—vitrectomy: A new instrument presentation, Ophthalmology 85, 1195–1200, 1978.Google Scholar
  42. 42.
    Beckman, H., and Fuller, T. A., Carbon dioxide laser scleral dissection and filtering procedure for glaucoma, Am. J. Ophthal. 88, 73–77, 1979.Google Scholar
  43. 43.
    Miller, J. B., Smith, M. R., and Boyer, D. S., Intraocular carbon dioxide laser photosurgery, Lasers Surg. Med. 1, 165–176, 1980.Google Scholar
  44. 44.
    Jako, G. J., Vaughan, C. W., Strong, M. S., and Polanyi, T. G., Surgical management of malignant tumors of the aerodigestive tract with carbon dioxide laser microsurgery, Int. Adv. Surg. Oncol. 1, 265–284, 1978.Google Scholar
  45. 45.
    Strong, M. S., The use of the CO2 laser in otolaryngology: a progress report, Trans. Am. Acad. Ophthal. and Otol. 82, 595–602, 1976.Google Scholar
  46. Stern, L. S., et al,Qualitative and morphometric evaluation of vocal cord lesions produced by the carbon dioxide laser, Laryngoscope 90, 792–808, 1980.Google Scholar
  47. Mihashi, S., et al,Laser surgery in otolaryngology: interaction of CO2 laser and soft tissue, Ann. N. Y. Acad. Sci. 267, 263–294, 1976.Google Scholar
  48. Carruth, J. A. S., et al,The carbon dioxide laser: Safety aspects, J. Laryngol. Otol. 94, 411–417, 1980.Google Scholar
  49. 49.
    Pratt, L. W., The CO2 laser in otolaryngology, J. Maine Med. Assoc. 71, 39–45, 1980.Google Scholar
  50. 50.
    Putney, F. J., Carbon dioxide laser in otolaryngology, Southern Med. J. 72, 1385–1386, 1979.Google Scholar
  51. 51.
    Lejeune, F. E., Jr., Intralaryngeal surgery, Laryngoscope 84, 1815–1820, 1977.Google Scholar
  52. 52.
    Andrews, A. H., and Moss, H. W., Experiences with carbon dioxide laser in the larynx, Ann. Otol. 83, 462–470, 1974.Google Scholar
  53. 53.
    Snow, J. C., Norton, M. L., Saluja, T. S., and Estanislao, A. F., Fire hazard during CO2 laser microsurgery on the larynx and trachea, Anesth. Analg. 55, 146–147, 1976.Google Scholar
  54. 54.
    Burgess, G. E., and Lejeune, F. E., Endotracheal tube ignition during laser surgery of the larynx, Arch. Otol. 105, 561–562, 1979.Google Scholar
  55. 55.
    Vourc’h, G., Tannieres, M., and Freche, G., Ignition of a tracheal tube during laryngeal surgery, Anesthesia 34, 685, 1979.Google Scholar
  56. 56.
    Vourc’h, G., Tannieres, M., and Freche, G., Anesthesia from microsurgery of the larynx using a carbon dioxide laser, Anesthesia 34, 53–57, 1979.Google Scholar
  57. Norton, M. L., et al,Endotracheal intubation and Venturi (JET) ventilation for laser microsurgery of the larynx, Ann. Otol. 85, 656–663, 1976.Google Scholar
  58. 58.
    Snow, J. C., Anesthesia for carbon dioxide laser microsurgery on the larynx and trachea, Anesth. Analg. 53, 507–512, 1974.Google Scholar
  59. Patil, V., et al,A modified endotracheal tube for laser microsurgery, Anesthesiology 51, 571, 1979.Google Scholar
  60. Kalhan, S. et al,A further modification of endotracheal tubes for laser microsurgery, Anesthesiology 53, 81, 1980.Google Scholar
  61. 61.
    Cosman, B., Clinical experience in the laser therapy of port wine stains, Lasers Surg. Med. 1, 133–152, 1980.Google Scholar
  62. 62.
    Apfelberg, D. B., Kosek, J., Maser, M. R., and Lash, H., Histology of port wine stains, Br. J. Plastic Surg. 32, 232–237, 1979.Google Scholar
  63. 63.
    Apfelberg, D. B., Progress report on extended clinical use of the argon laser for cutaneous lesions, Lasers Surg. Med. 1, 71–83, 1980.Google Scholar
  64. 64.
    Apfelberg, D. B., Maser, M. R., Lash, H., and Rivers, S. L., Extended clinical use of the argon laser for cutaneous lesions, Arch. Dermatol. 115, 719–721, 1979.Google Scholar
  65. 65.
    Ohshiro, T., Maruyama, Y., Nakajima, H., and Mima, M., Treatment of pigmentation of the lips and oral mucosa in Peutz-Jeghers syndrome using ruby and argon lasers, Br. J. Plastic Surg. 33, 346–349, 1980.Google Scholar
  66. 66.
    Staehler, G., and Hofstetter, A., Transurethral laser irradiation of urinary bladder tumors, Eur. Urol. 5, 64–69, 1979.Google Scholar
  67. 67.
    Staehler, G., Dosimetry for Nd:YAG laser applications in urology, Lasers Surg. Med. 1, 191–197, 1980.Google Scholar
  68. 68.
    Goodale, R. L., Okada, A., Gonzales, R., Borner, J. W., Edlich, R. F., and Wangensteen, O. H., Rapid endoscopie control of bleeding gastric erosions by laser radiation, Arch. Surg. 101, 211–214, 1970.Google Scholar
  69. 69.
    Yellin, A. E., Dwyer, R. M., Craig, J. R., Bass, M., and Cherlow, J., Endoscopie argon ion laser phototherapy of bleeding gastric lesions, Arch. Surg. 111, 750–755, 1976.Google Scholar
  70. 70.
    Kiefhaber, P., Nath, G., and Moritz, K., Endoscopical control of massive gastrointestinal hemorrhage by irradiation with a high-power Nd-Yag laser, Prog. Surg. 15, 140–155, 1977.Google Scholar
  71. 71.
    Meyer, H. J., Vonnahme, F. J., Haverkampf, K., and Huchzermeyer, H., Laser coagulation in the upper GI tract: A preliminary light and scanning electron-microscopic study, Lasers Surg. Med. 1, 103–112 1980.Google Scholar
  72. 72.
    Wirthlin, L. S., Van Urk, H., and Malt, R. A., Predictors of surgical mortality in patients with cirrhosis and nonvariceal gastroduodenal bleeding, Surg. Gyn. Obst. 139, 65–68, 1974.Google Scholar
  73. 73.
    Waitman, A. M., Spira, I., Chryssanthou, C. P., and Stenger, R. J., Fiberoptic-coupled argon laser in the control of experimentally produced gastric bleeding, Gastrointest. Endosc. 22, 78–81, 1975.Google Scholar
  74. 74.
    Dotter, C. T., Goldman, M. L., and Rosch, J., Instant selective arterial occlusion with isobutyl 2-cyanoacrylate, Radiology 114, 227–230, 1975.Google Scholar
  75. 75.
    Protell, R. L., Silverstein, F. E., Gulacsik, C., Martin, T. R., Dennis, M. B., Auth, D. C., and Rubin, C. E., Cyanoacrylate glue (flucrylate) fails to stop bleeding from experimental gastric ulcers, Gastroenterology (abstr.) 72, 11–14, 1977.Google Scholar
  76. 76.
    Katon, R. M., Experimental control of gastrointestinal hemorrhage via the endoscope: A new era dawns, Gastroenterology 70, 272–277, 1976.Google Scholar
  77. 77.
    Sugawa, C., Shier, M., Lucas, C. E., and Walt, A. J., Electrocoagulation of bleeding in the upper part of the gastrointestinal tract: A preliminary experimental clinical report, Arch. Surg. 110, 975–979, 1975.Google Scholar
  78. 78.
    Blackwood, W. D., and Silvas, S. E., Electrocoagulation of hemorrhage gastritis, Gastrointest. Endosc. 18, 53–55, 1971.Google Scholar
  79. 79.
    Blackwood, W. D., and Silvas, S. E., Gastroscopie electrosurgery, Gastroenterology 61, 305–314, 1971.Google Scholar
  80. 80.
    Papp, J. P., Endoscopie electrocoagulation of upper gastrointestinal hemorrhage, J. Am. Med. Assoc. 236, 2076–2079, 1976.Google Scholar
  81. 81.
    Papp, J. P., Fox, J. M., and Wilks, H. S., Experimental electrocoagulation of dog gastric mucosa, Gastr. Intest. Endosc. 22, 27–28, 1975.Google Scholar
  82. 82.
    Volpicelli, N. A., McCarthy, J. D., Bartlett, J. D., and Badger, W. E., Endoscopie electrocoagulation: An alternative to operative therapy in bleeding peptic ulcer disease, Arch. Surg. 113, 483, 1978.Google Scholar
  83. 83.
    Laurence, B. H., Vallon, A. G., Cotton, P. B., Miro, J. R., Oses, J. C., LeBodic, L., Sudry, P., Fruhmorgen, P., and Bodem, F., Endoscopic laser photocoagulation for bleeding peptic ulcers, Lancet 23 124–125, 1980.Google Scholar
  84. 84.
    Brown, S. G., Salmon, P. R., Kelly, B. M., Calder, H., Pearson, H., Weaver, B. M. Q., and Read, A. E., Argon laser photocoagulation in the dog stomach, Gut 20, 680–687, 1979.Google Scholar
  85. 85.
    Dwyer, R. M., Yellin, A. E., Craig, J., Cherlow, J., and Bass, M., Gastric hemostasis by laser phototherapy in man: A preliminary report, J. Am. Med. Assoc. 236, 1383–1384, 1976.Google Scholar
  86. 86.
    Fruhmorgen, P., Bodem, F., Reidenbach, H. D., and Kaudk, B., Endoscopic laser coagulation of bleeding gastrointestinal lesions with report of the first therapeutic application in man, Gastrointest. Endosc. 23, 73–75, 1976.Google Scholar
  87. 87.
    Silverstein, F. E., Protell, R. L., Piercey, J., Rubin, C. E., Auth, D. C., and Dennis, M., Endoscopic laser treatment, II. Comparison of the efficacy of high-and low-power photo-coagulation in control of severely bleeding experimental ulcers in dogs, Gastroenterology 73, 481–486, 1977.Google Scholar
  88. 88.
    Silverstein, F. E., Protell, R. L., Gulacsik, C., Auth, D. C., Deltenre, M., Dennis, M., Piercey, J., and Rubin, C., Endoscopic laser treatment, III. The development and testing of a gas-jet-assisted argon laser wave guide in control of bleeding experimental ulcers, Gastroenterology 74, 232–239, 1978.Google Scholar
  89. 89.
    Staehler, G., Hoffstetter, A., Gorisch, W., Kieditsch, E., and Mussiggang, M., Endoscopy in experimental urology using an argon laser beam, Endoscopy 8, 1–4, 1976.Google Scholar
  90. 90.
    Silverstein, F. E., Protell, R. L., Gilbert, D. A., Gulacsik, C., Auth, D. C., Dennis, M. E., and Rubin, C. E., Argon versus Neodymium—YAG laser photocoagulation of experimental canine ulcers, Gastroenterology 77, 491–496, 1979.Google Scholar
  91. 91.
    Mainster, M. A., White, T. J., Tips, J. H., and Wilson, P. W., Refined temperature increases produced by intense light sources, J. Opt. Soc. Am. 60, 264–270, 1970.Google Scholar
  92. 92.
    Mainster, M. A., White, T. J., Tips, J. H., and Wilson, P. W., Transient thermal behavior in biological systems, Bull. Math. Biophys. 32, 303–314, 1970.MATHGoogle Scholar
  93. 93.
    Mainster, M. A., White, T. J., and Allen, R. G., Spectral dependence of retinal damage produced by intense light sources, J. Opt. Soc. Am. 60, 848–855, 1970.Google Scholar
  94. 94.
    Wissler, E. H., An analysis of chorioretinal thermal response to intense light exposure, IEEE Trans. Biomed. Engr. 23, 207–214, 1976.Google Scholar
  95. 95.
    Takata, A., Laser-induced thermal damage of skin, SAM-TR-77–38, USAF School of Aerospace Medicine ( IIT Research Institute, Chicago, 1977 ).Google Scholar
  96. 96.
    Welsch, H., Birngruber, R., Boergen, K.-P., Gabel, V. P., and Hillenkamp, F., The influence of scattering on the wavelength-dependent light absorption in blood, Proc. Lasers Med. Biol. (GSF Neuherberg), vol. 6SF-Bericht BPT5 14 14–8, 1977.Google Scholar
  97. 97.
    Takata, A. N., Thermal model of laser-induced skin damage: computer program operator’s manual, SAM-TR-77–37, USAF School of Aerospace Medicine ( IIT Research Institute, Chicago, 1977 ).Google Scholar
  98. 98.
    White, T. J., Mainster, M. A., Wilson, P. W., and Tips, J. H., Chorioretinal temperature increases from solar observations, Bull. Math. Biophys. 33, 1–17, 1971.Google Scholar
  99. 99.
    Takata, A. N., Goldfinch, L., Hinds, J. K., Kuan, L. P., Thomopoulis, N., and Weigandt, A., Thermal model of laser-induced eye damage, Report F-41609–74-C-0005, USAF School of Aerospace Medicine ( IIT Research Institute, Chicago, 1974 ).Google Scholar
  100. 100.
    Welch, A. J., Cain, C. P., and Priebe, L. A., Temperature rise in fundus exposed to laser radiation, SAM-TR-75–32, USAF School of Aerospace Medicine ( IIT Research Institute, Chicago, 1975 ).Google Scholar
  101. 101.
    Douglas, J., and Gunn, J., A general formulation of alternating direction methods, Numer. Math. 6, 428–453, 1964.MathSciNetMATHGoogle Scholar
  102. 102.
    Priebe, L. A., and Welch, A. J., A dimensionless model for the calculation of temperature increase in biologic tissues exposed to nonionizing radiation, IEEE Trans. Biomed. Eng. 26, 244–250, 1979.Google Scholar
  103. 103.
    Boergen, K. P., Birngruber, R., Gabel, V. P., and Hillenkamp, F., Experimental studies on controlled closure of small vessels by laser irradiation, Proc. Lasers Med. Biol. (GSF Neuherberg 1977 ).Google Scholar
  104. 104.
    Beibie, H. F., Frankhauser, F., Lotmar, W., and Roulier, A., Theoretical estimate of the temperature within irradiated retinal vessels, Acta Ophthal. 52, 13–36, 1974.Google Scholar
  105. 105.
    Gorisch, W., and Boergen, K. P., Thermal shrinkage of collagen fibers during vessel occlusion, Laser Surg. 3rd International Congress for Laser Surgery, Graz, Austria, 1979.Google Scholar
  106. 106.
    Wissler, E. H., and Gorisch, W., A mathematical model for predicting thermal responses in the neighborhood of arteries and veins during laser irradiation, Advances in Biomedical Engineering, V. Mow, ed., (ASME, New York, 1980 ).Google Scholar
  107. 107.
    Welch, A. J., Wissler, E. H., and Priebe, L. A., Significance of blood flow in calculations of temperature in laser-irradiated tissue, IEEE Trans. Biomed. Eng. BME-27, 164–166, 1980.Google Scholar
  108. 108.
    Kelle, C. A., and Neil, E., Samson Wright’s Applied Physiology (Oxford University Press, Oxford, Eng. 1971 ).Google Scholar
  109. 109.
    Welch, A. J., Priebe, L. A., Forster, L. D., Gilbert, R., Lee, C., and Drake, P., Experimental validation of thermal retinal models of damage from laser radiation, SAM-TR-79–9, USAF School of Aerospace Medicine, 1979 ( IIT Research Institute, Chicago, 1979 ).Google Scholar
  110. 110.
    Priebe, L. A., Cain, C. P., and Welch, A. J., Temperature rises required for production of minimal lesions in the macula mulatta retina, Am. J. Ophthal. 79, 405–413, 1975.Google Scholar
  111. 111.
    Lee, C. F., Experimental validation of retinal temperature distribution model for laser irradiation (Masters thesis, University of Texas, Austin, 1977 ).Google Scholar
  112. 112.
    Cain, C. P., and Welch, A. J., Thin film temperature sensors for biological measurements, IEEE Trans. Biomed. Eng BME-21, 421–423, 1974.Google Scholar
  113. 113.
    Routh, J. I., Introduction to Biochemistry, (W. B. Saunders Col, Philadelphia, 1971 ).Google Scholar
  114. 114.
    Henriques, F. C., and Moritz, A. R., Studies of thermal injury, I. Conduction of heat to and through the skin, Am. J. Path. 23, 531–549, 1947.Google Scholar
  115. 115.
    Stoll, A. M., and Green, L. C., Relationship between pain and tissue damage due to thermal radiation, J. Appl. Physiol. 14, 373–382, 1959.Google Scholar
  116. 116.
    Hu, C. L., and Barnes, F. S., Thermal-chemical damage in biological material under laser irradiation, IEEE Trans. Biomed. Eng., 17, 220, 1970.Google Scholar
  117. 117.
    Kach, E. A., and Incropera, F. P., Induction thermocoagulation: Thermal response and lesion size, IEEE Trans. Biomed. Eng. 21, 8, 1974.Google Scholar
  118. 118.
    Takata, A., Development of criterion for skin burns, Aersospace Med. 45, 634–637, 1974.Google Scholar
  119. 119.
    Vassiliadis, A., Ocular damage from laser radiation, Laser Applications in Medicine and Biology, vol. 1, M. L. Wolbarsht, ed. (Plenum, New York, 1971 ), pp. 125–162.Google Scholar
  120. 120.
    Mertz, A. R., Anderson, B. R., Bell, E. L., and Egbert, D. E., Retinal thermal model of laser induced eye damage: computer program operator’s manual, SAM-TR-76–33, USAF School of Aerospace Medicine ( IIT Research Institute, Chicago, 1976 ).Google Scholar
  121. 121.
    Welch, A. J., Cain, C. P., and Priebe, L. A., Temperature rise in fundus exposed to laser radiation, SAM-TR-75–32, USAF School of Aerospace Medicine ( IIT Research Institute, Chicago, 1975 ).Google Scholar
  122. 122.
    Beatrice, E. S., and Frisch, G. D., Retinal laser damage thresholds as a function of image diameter, Arch. Environ. Health 27, 322–326, 1973.Google Scholar
  123. 123.
    Ham, W. T., Geeraets, W. J., Mueller, H. A., Williams, R. C., Clarke, A. M., and Cleary, S. F., Retinal burns threshold for the helium—neon laser in the rhesus monkey, Arch. Ophthal. 84, 797–808, 1970.Google Scholar
  124. 124.
    Schorner, J. Untersuchungen von Wechselwirkungs mechanismus an Biologischen Proben mit einem extrem schmälbandigen Farbstofflaser, GSF-Bericht AO 280, Gesellschaft fur Strahelen und Unwelfforschung GmbH, München, 1980.Google Scholar
  125. 125.
    Welch, A. J., Priebe, L. A., Polhamus, G. D., Mistry, G. D., and Drake, P., Limits of applicability of thermal models of thermal injury, final report for contract F41609–76-C0005, USAF School of Aerospace Medicine, Brooks Air Force Base, Texas, 1976.Google Scholar
  126. 126.
    Bergquist, T., Kleman, B., and Tengroth, B., Laser irradiance levels for retinal lesions, Acta Ophthal. 43, 331–349, 1965.Google Scholar
  127. 127.
    Ham, W. T., Williams, R. C., Mueller, H. A., Guerry, D., Clarke, A. M., and Geeraets, W. J., Effects of laser radiation on mammalian eye, Ann. N. Y. Acad. Sci. 28, 4, 517, 1966.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • A. J. Welch
    • 1
  1. 1.Department of Electrical and Computer Engineering and Biomedical Engineering ProgramUniversity of TexasAustinUSA

Personalised recommendations