Advertisement

Analysis of Heat Transfer and Temperature Distributions in Tissues during Local and Whole-Body Hyperthermia

  • Rakesh K. Jain

Abstract

Heat in various forms has been exploited by mankind for therapeutic purposes since ancient times. The Egyptians (~3000 b.c.) were the first to use cautery against tumors and various nonmalignant diseases(1). The Hindus (~2000 b.c.) used cautery to control surface lesions during the Aryan civilization.(2) The importance of therapeutic application of heat in the Greek civilization is reflected in the preceding aphorism attributed to Hippocrates (460–357 b.c.). He recommended cautery (with a red-hot iron) for small tumors and many other diseases(3–5) The application of cautery using heated metals or lenses remained popular among the medical community until the middle of the nineteenth century, when more sophisticated methods for elevating local tissue temperatures became available (e.g., diathermy and ultrasound).

Keywords

Heat Transfer Perfusion Rate Effective Thermal Conductivity Blood Flow Rate Neoplastic Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Breasted, J. H., The Edwin Smith Surgical Papyrus (Chicago: 1930 ).Google Scholar
  2. 2.
    Jee, B. S., A Short History of Aryan Medical Sciences (London, 1896 ).Google Scholar
  3. 3.
    Fienus, T., De cauteriis libri quinqui (Louvain, 1598 ).Google Scholar
  4. 4.
    Severin, M. A., De la medicine efficae (Geneva: 1668 ).Google Scholar
  5. 5.
    Wolff, J., Die Lehre von der Krebskrankheit (Jena: 1907 ).Google Scholar
  6. 6.
    Coley, W. B., The treatment of malignant tumor by repeated inoculations of erysipelas with a report of original cases, Am. J. Med. Sci. 105, 487–511, 1893.Google Scholar
  7. 7.
    Coley, W. B., Late results of the treatment of inoperable sarcoma by the mixed toxins of erysipelas and bacillins prodigiosus, Am. J. Med. Sci. 131, 375, 1906.Google Scholar
  8. 8.
    Nauts, H. C., Fowler, G. A., and Bogarko, F. H., A review of the inffue.,ce of bacterial infection and bacterial products (Coley’s toxins) on malignant tumors in man, Acta Med. Scand. 145:suppl. 276, 1–103, 1953.Google Scholar
  9. 9.
    Stevenson, H. N., The effect of heat upon tumor tissue, J. Cancer Res. 4, 54, 1919.Google Scholar
  10. 10.
    Rohdenburg, G. L., and Prime, F., The effect of combined radiation and heat in neoplasms, Arch. Surg. (Chicago) 2, 116, 1921.Google Scholar
  11. 11.
    Crile, G., Jr., Heat as an adjuvant to the treatment of cancer: Experimental studies, Clin. Annals, Cleveland 28, 577–582, 1940.Google Scholar
  12. 12.
    Johnson, H. J., The action of short radiowaves on tissues. III. A comparison of the thermal sensitivities of transplantable tumors in vivo and in vitro. Am. J. Cancer 38, 533–550, 1940.Google Scholar
  13. 13.
    Overgaard, K., and Okkels, H., Uber den Einfluss der Warmebehandlung auf Woods Sarkom, Strahlentherapie 68, 39, 1940.Google Scholar
  14. 14.
    Schliephake, E., Les ondes courtes en biologie, Paris, 1938.Google Scholar
  15. 15.
    Denier, A., Les ondes hertziennes ultracourtes de 80 cm., J. Radiol. Electrol. 20, 193, 1936.Google Scholar
  16. 16.
    Horvath, J., Ultraschallwirkung beim menschlichen Sarkom. Strahlentherapie 75, 119–125, 1944.Google Scholar
  17. 17.
    Horvath, J., New possibilities in the treatment of malignant tumors by ultrasonic waves, Dtsch Med. Wochenschr. 27–28, 392, 1947.Google Scholar
  18. 18.
    Cavaliere, R., Ciocatto, E. C., Giovannela, B. C., Heidelberger, C., Johnson, R. O., Martotini, M., Mondovi, B., Moricca, G., and Rossi-Fanelli, A., Selective heat sensitivity of cancer cells: Biochemical and clinical studies, Cancer 20, 1351–1381, 1967.Google Scholar
  19. 19.
    Stehlin, J. S., Hyperthermie perfusion with chemotherapy for cancer of the extremities, Surg. Gynecol. Obst. 129, 305–308, 1969.Google Scholar
  20. 20.
    Robinson, J. E., and Wizenberg, M. J., eds. Proc. 1st Int. Symp, Cancer Therapy by Hyperthermia and Radiation ( Bethesda, MD: American College of Radiology, 1976 ).Google Scholar
  21. 21.
    Lett, J. T., and Adler, H., eds., Advances in Radiation Biology, vol. 6 ( New York: Academic Press, 1976 ).Google Scholar
  22. 22.
    Rossi-Fanelli, A., Cavaliere, R., Mondovi, B., and Moricca, G., eds., Selective Heat Sensitivity of Cancer Cells (New York: Springer-Verlag, 1977). Published as vol. 59 of Recent Results in Cancer Research.Google Scholar
  23. 23.
    Streffer, C., ed., Proc. 2d Int. Symp. Cancer Therapy by Hyperthermia and Radiation ( Baltimore, MD: Urban and Schwarzenberg, 1978 ).Google Scholar
  24. 24.
    Caldwell, W. E., and Durand, R. E., eds. Proc. Conf. Clin., Prospects of Hypoxie Cell Sensitizers and Hyperthermia ( Madison: University of Wisconsin Press, 1978 ).Google Scholar
  25. 25.
    Midler, J. W. ed., Proc. conf. on hyperthermia in cancer treatment. Cancer Res. 39, 2231–2340, 1979.Google Scholar
  26. 26.
    Jain, R. K., and Gullino, P. M., eds., Thermal characteristics of tumors: Applications in detection and treatment, Ann. N. Y. Acad. Sci. 335, 1980.Google Scholar
  27. 27.
    Dewey, W. C., and Dethlefsen, L., eds., Proceedings 3rd International Conference on Cancer Therapy by Hyperthermia, Drugs, and Radiation, National Cancer Institute, Monograph Vol. 63, 1980.Google Scholar
  28. 28.
    Jain, R. K., Bioheat transfer: mathematical models of thermal systems, in Hyperthermia in Cancer Therapy,Storm, F. K., ed. (Boston: G. K. Hall and Co., in press).Google Scholar
  29. 29.
    Pennes, H. H., Analysis of tissue and arterial blood temperatures in the resting human forearm, J. Appl. Physiol. 1, 93, 1948.ADSGoogle Scholar
  30. 30.
    Trezek, G. J., and Jewett, D. L., Nodal network of transient temperature fields from cooling sources in anesthetized brain, IEEE Trans. Biomed. Eng. 4, 281, 1970.Google Scholar
  31. 31.
    Jain, R. K., and Wei, J., Dynamics of drug transport in solid tumors: a distributed parameter model, J. Bioeng. 1, 313–330, 1977.Google Scholar
  32. 32.
    Wulff, W., The energy conservation equation for the living tissue, IEEE Trans. Biomed. Eng. 21, 494, 1974.Google Scholar
  33. 33.
    Mitchell, J. W., and Myers, G. E., An analytical model of the countercurrent heat exchange phenomenon, Biophys. J. 8, 897, 1968.Google Scholar
  34. 34.
    Keller, K. H., and Seiler, L., An analysis of peripheral heat transfer in man, J. Appl. Physiol. 30, 779–786, 1971.Google Scholar
  35. 35.
    Weinbaum, S., General discussions, Ann. N. Y. Acad. Sci. 335, 173–175, 1980.Google Scholar
  36. 36.
    Klinger, H. G., Heat transfer in perfused biological tissue, I: General theory, Bull. Math. Biol. 36, 403, 1974.MathSciNetMATHGoogle Scholar
  37. 37.
    Chen, M. M., and Holmes, K. R., Microvascular contributions in tissue heat transfer, Ann. N. Y. Acad. Sci. 335, 137–150, 1980.ADSGoogle Scholar
  38. 38.
    Chato, J. C., Heat transfer in bioengineering, in Advanced Heat Transfer, Chao, B. T. ed. (Urbana: University of Illinois Press, p. 395, 1969 ).Google Scholar
  39. 39.
    Bowman, H. F., Cravalho, E. G., and Woods, M., Theory, measurements and applications of thermal properties of biomaterials, Ann. Rev. Biophys. Bioeng. 4, 43–80, 1975.Google Scholar
  40. 40.
    Jain, R. K., Grantham, F. H., and Gullino, P. M., Blood flow and heat transfer in Walker 256 mammary carcinoma, J. Nat. Cancer Inst. 62, 927–933, 1979.Google Scholar
  41. 41.
    Jain, R. K., and Gullino, P. M., Analysis of transient temperature distribution in a perfused medium due to a spherical heat source with application to heat transfer in tumors: Homogeneous and perfused medium, Chem. Eng. Comm. 4, 95–118, 1980.Google Scholar
  42. 42.
    Shah, S., and Jain, R. K., Modification of blood flow in W256 carcinoma by hyperglycemia and hyperthermia: a thermal probe method, Proc. Am. Assoc. Cancer Res. 22, 60, 1981.Google Scholar
  43. 43.
    Holmes, K. R., and Chen, M. M., Local thermal conductivity of para-7 fibrosarcoma in hamster, Adv. Bioeng. (ASME) 4, 147–149, 1979.Google Scholar
  44. 44.
    Bowman, H. F., Heat transfer mechanisms and thermal dosimetry, paper presented at the 3d Int. Symp. Cancer Therapy Hyperthermia, Drugs, and Radiation, Fort Collins, CO, June 22–26, 1980.Google Scholar
  45. 45.
    Cooper, T. E., and Trezek, G. J., Correlation of thermal properties of some human tissues with water content, J. Aerospace Med. 42, 24–28, 1971.Google Scholar
  46. 46.
    Poppendiek, H. F., Randall, R., Breeden, J. A., Chambers, J. E., and Murphy, J. R., Thermal conductivity measurements and predictions for biological fluids and tissues, Cryobiology 3, 318, 1967.Google Scholar
  47. 47.
    Bischoff, K., Some fundamental considerations of the applications of pharmacokinetics to cancer chemotherapy, Cancer Chemother. Rep. 59, 777–793, 1975.Google Scholar
  48. 48.
    Jain, R. K., Weissbrod, J., and Wei, J., Mass transfer in tumors: Characterization and applications in chemotherapy, Adv. Cancer Res. 33, 251–311, 1980.Google Scholar
  49. 49.
    Geslowski, L. E., and Jain, R. K., Physiologically based pharmacokinetics: Principles and applications, J. Pharm. Sci. 72, 1103–1127, 1983.Google Scholar
  50. 50.
    Slotman, G. J., Swaminathan, A. P., Casey, K. F., and Rush, B. F., Jr., Quantitative changes in tumor blood flow with expanding tumor mass in the VX2 carcinoma, Proc. Am. Assoc. Cancer Res. 21, 51, 1980 (abstract no. 203).Google Scholar
  51. 51.
    Mantyla, M. J., Kuikka, J., and Rekonen, A., Regional blood flow in human tumours with special reference to the effect of radiotherapy, Br. J. Radiol. 49, 335–338, 1976.Google Scholar
  52. 52.
    Gullino, P. M., In vitro perfusion of tumors, in J. C. Norman, Folkman, J., Hardison, W. G., et al, eds., Organ Perfusion and Preservation ( New York: Appleton-Century-Crofts, 1968 ), pp. 877–898.Google Scholar
  53. 53.
    Song, C. W., Kanz, M. S., Rhee, J. G., and Levitt, S. H., Effect of hyperthermia on vascular function in normal and neoplastic tissues in vivo, Ann. N. Y. Acad. Sci. 335, 35–47, 1980.ADSGoogle Scholar
  54. 54.
    Vaupel, P., Interrelationship between mean arterial blood pressure, blood flow and vascular resistance in solid tumor tissue of DS-carcino-sarcoma, Experientia 31, 587, 1975.Google Scholar
  55. 55.
    Goldacre, R. J., and Sylven, B., A rapid method of studying tumour blood supply using systemic dyes, Nature (London) 14, 63, 1959.ADSGoogle Scholar
  56. 56.
    Rowe-Jones, D. C., The penetration of cytotoxins in malignant tumours, Br. J. Cancer 22, 156–162, 1968.Google Scholar
  57. 57.
    Cullino, P. M., Jain, R. K., and Grantham, F. H., Temperature gradients and local perfusion in a mammary carcinoma, J. Nat. Cancer Inst. 68, 519–533, 1982.Google Scholar
  58. 58.
    Shibata, H. R., and MacLean, L. D., Blood flow to tumors, Prog. Clin. Cancer 11, 33–47, 1966.Google Scholar
  59. 59.
    Tuttle, E. P., and Sadler, J. S., Measurement of renal tissue fluid turnover rates by thermal washout technique, Hypertension 13, 3, 1964.Google Scholar
  60. 60.
    Straw, J. A., Hart, M. M., Klubes, P., Zaharko, D. S., and Dedrick, R. L., Distribution of anticancer agents in spontaneous animal tumors, I. Regional blood flow and methotrexate distribution in canine lymphosarcoma, J. Nat. Cancer Inst. 52, 1327–1331, 1974.Google Scholar
  61. 61.
    Jain, R. K., Effect of inhomogeneities and finite boundaries on temperature distributions in a perfused medium with application to tumours, J. Biomech. Eng, Trans. ASME 100, 235–241, 1978.Google Scholar
  62. 62.
    Endrich, B., Zweifach, B. W., Reinhold, H. S., and Intaglietta, M., Quantitative studies of microcirculatory function in malignant tissue: Influence of temperature on microvascular hemodynamics during the early growth of the BA 1112 rat sarcoma, Int. J. Rad. Oncol. Biol. Physics 5, 2021–2030, 1979.Google Scholar
  63. 63.
    Dudar, T. E., and Jain, R. K., Microcirculatory changes during hyperthermia in normal and neoplastic tissues, Cancer Res. 44, 605–612, 1984.Google Scholar
  64. 64.
    Nugent, L. J., and Jain, R. K., Diffusional transport and permeability of macromolecules in normal and neoplastic tissues, Cancer Res. 44, 238–244, 1984.Google Scholar
  65. 65.
    Gerlowski, L. E., and Jain, R. K., 1982 (unpublished results).Google Scholar
  66. 66.
    Gemmill, C. L., and Brobeck, J. R., Energy exchange, in Medical Physiology, edited by Mountcastle, V. B. ( St. Louis: C. V. Mosby, 1968 ), pp. 485–488.Google Scholar
  67. 67.
    Altman, P., and Ditmer, D., Biology Data Book ( Bethesda, MD: Fed. Am. Soc. Exptl., 1954 ).Google Scholar
  68. 68.
    Huckaba, C. E., and Tam, H. S., Modeling of human thermal system, in Advances in Biomedical Engineering, part I, ed. D. O. Cooney, ( New York: Marcel Dekker, 1980 ), pp. 1–58.Google Scholar
  69. 69.
    a) Volpe, B. T., and Jain, R. K., Temperature distributions and thermal responses in humans, I. Simulations of various modes of whole-body hyperthermia in normal subjects, Med. Phys. 9, 506–513, 1982.Google Scholar
  70. 69.
    b) Volpe, B. T., and Jain, R. K., Temperature distributions and thermal responses in humans, II. Simulations of whole-body, regional and localized hyperthermia in cancer patients, Am. Inst. Chem. Eng. Symp. Ser. 79, 116–123, 1983.Google Scholar
  71. 70.
    Gullino, P. M. In vivo utilization of oxygen and glucose by neoplastic tissue, in Oxygen Transport to Tissue, J. Groste, D. Reneau, G. Thews, eds., ( New York: Plenum, 1976 ), pp. 521–536.Google Scholar
  72. 71.
    Vaupel, P., Astemgaswechsel und Glucosestoffwechsel von Implantationstumoren (DSCarcinosarkom) in vivo ( Mainz: Akademie der Wissenshaften und der Literatur, 1974 ).Google Scholar
  73. 72.
    Gullino, P. M., Grantham, F. H., and Courtney, A. H., Utilization of oxygen by transplanted tumors in vivo, Cancer Res. 27, 1020–1030, 1967.Google Scholar
  74. 73.
    Cullino, P. M., Grantham, F. H., Courtney, A. H., Glucose consumption by transplanted tumors in vivo, Cancer Res. 27, 1031–1040 1967.Google Scholar
  75. 74.
    Cullino, P. M., Grantham, F. H., Courtney, A. H., and Losonczy, I., Relationship between oxygen and glucose consumption by transplanted tumors in vivo, Cancer Res. 27, 1041–1052, 1967.Google Scholar
  76. 75.
    Vaupel, P., Frinak, S., Mueller-Klieser, W., and Bicher, H. I., Impact of localized hyperthermia on the cellular microenvironment in solid tumors, Proc. 3d Int. Symp. Cancer Therapy Hyperthermia, Drugs, and Radiation June 22–26, 1980.Google Scholar
  77. 76.
    Sien, H. P., and Jain, R. K., Temperature distributions in normal and neoplastic tissues during hyperthermia: lumped parameter analysis, J. Therm. Biol. 4, 157–164, 1979.Google Scholar
  78. 77.
    Hardy, J. D., Gagge, A. P., and Stolwijk, J. A. J., Physiological and Behavioral Thermoregulation ( Springfield, IL: Charles C. Thomas, 1970 ).Google Scholar
  79. 78.
    Fan, L. T., Hsu, F. T., and Hwang, C. L., A review of mathematical models of the human thermal system, IEEE Trans. Biomed. Eng. BME-18, 218, 1971.Google Scholar
  80. 79.
    Hwang, C. L., and Konz, S. A., Engineering models of the human thermoregulatory system—a review, IEEE Trans. Biomed. Eng. BME-24, 309–315, 1977.Google Scholar
  81. 80.
    Stolwijk, J. A. J., Mathematical models of thermal regulation, Ann. N. Y. Acad. Sci. 335, 98–106, 1980.ADSGoogle Scholar
  82. 81.
    Shitzer, A., Mathematical models of thermoregulation and heat transfer in mammals, NASA Tech. Mem. X62, 172, 1974.Google Scholar
  83. 82.
    Sien, H. P., and Jain, R. K., Intratumor temperature distributions during hyperthermia, J. Therm. Biol. 5, 127–130, 1980.Google Scholar
  84. 83.
    Chrysanthopoulos, G., and Jain, R. K., Thermal interactions between normal and neoplastic tissues in the rat, rabbit, swine, and dog during hyperthermia, J. Med. Phys. 7, 529–539, 1980.Google Scholar
  85. 84.
    Jain, R. K., Heat transfer in tumors: Characterization and applications to thermography and hyperthermia, in Advances in Biomedical Engineering, Cooney, D. O., ed., part 1 ( New York: Marcel Dekker, 1980 ).Google Scholar
  86. 85.
    Wissler, E. H., Steady-state temperature distribution in man, J. Appl. Physiol. 16, 734, 1961.Google Scholar
  87. 86.
    a) Sien, H. P., Dynamics of temperature distributions in normal and neoplastic tissues during hyperthermia (M. S. thesis, Columbia University, New York, 1978 ). (b) Chrysanthopoulas, G., Thermal interactions between normal and neoplastic tissues in mammalian systems during hyperthermia (M. S. thesis, Columbia University, New York, 1979 ).Google Scholar
  88. 87.
    Volpe, B. T., Analysis of temperature distributions and thermal response in cancer patients during hyperthermia (M. S. thesis, Carnegie–Mellon University, Pittsburgh, 1981 ).Google Scholar
  89. 88.
    Cunningham, D. J., An evaluation of heat transfer through skin in the human extremity, in Physiological and Behavioral Thermoregulation ( Springfield, IL: Charles C. Thomas, 1970 ).Google Scholar
  90. 89.
    Thauer, R., Circulatory adjustments to climatic requirements, in Handbook of Physiology, vol. III, Hamilton, W. F., and Dow, P., eds. ( Washington, DC: Am. Physiol. Soc., 1965 ), pp. 1921–1966.Google Scholar
  91. 90.
    Esmay, M. L., Principles of Animal Environment ( Westport, CT: AVI Publishing, 1969 ), pp. 77–80.Google Scholar
  92. 91.
    Hales, J. R. S., Physiological responses to heat, in MTP Int. Rev. Ser, Physiology series 1, vol. 7, Robertshaw, D., ed. (London: Butterworths), pp. 107–162, 1970.Google Scholar
  93. 92.
    Schwan, H. P., Biophysics of diathermy, in Therapeutic Heat and Cold, Licht, S., ed., ( New Haven, CT: E. Licht Publishers, 1965 ), pp. 63–125.Google Scholar
  94. 93.
    Har-Kedar, I., and Bleehan, N. J., Experimental and clinical aspects of hyperthermia applied to the treatment of cancer with special reference to the role of ultrasonic and microwave heating, Adv. Rad. Biol. 6, 229–266, 1976.Google Scholar
  95. 94.
    Dobson, J., Equipment for local and regional hyperthermia, report prepared by WSA, Inc. San Diego, CA, for the Radiotherapy Development Branch, DCT, NCI, NIH, Feb. 1980.Google Scholar
  96. 95.
    Hunt, J. W., Application of microwave, ultrasound, and radiofrequency heating in vivo, Proc. 3d Int. Symp. Cancer Therapy Hyperthermia, Drugs, and Radiation, June 22–26, 1980.Google Scholar
  97. 96.
    Marmor, J. B., Pounds, D., Hahn, N., and Hahn, G. M., Treating spontaneous tumors in dogs and cats by ultrasound-induced hyperthermia, Int. J. Rad. Oncol. Biol. Phys. 4, 967–973, 1978.Google Scholar
  98. 97.
    Lele, P. P., A transient thermal pulse technique for measurement of tissue thermal diffusivity in vivo, Ann. N. Y. Acad. Sci. 335, 83–85, 1980.Google Scholar
  99. 98.
    Pounds, D. D., personal communication, 1980.Google Scholar
  100. 99.
    Chan, A. K., Siglemann, R. A., and Guy, A. W., Calculations of therapeutic heat generated by ultrasound in fat—muscle—bone layers, IEEE Trans. Biomed. Eng. BME-21, 280–284, 1974.Google Scholar
  101. 100.
    Guttner, W., Ultraschall in Menschlichen Korper, Acustica 4, 547–554, 1954.Google Scholar
  102. 101.
    Schwan, H. P., Carstensen, E. L., and Li, K., Electric and ultrasonic deep-heating diathermy, Electronics, Mar. 1954, pp. 172–175.Google Scholar
  103. 102.
    Chan, A. K., Sigelmann, R. A., Guy, A. W., and Lehman, J. F., Calculation by the method of finite differences of the temperature distribution in layered tissues, IEEE Trans. Biomed. Eng. BME-20, 86–90, 1973.Google Scholar
  104. 103.
    Haar, ter G. R., Computed temperature profiles in tissues resulting from ultrasonic irradiation, abstr. no. 39, 3d Int. Symp. Cancer Therapy Hyperthermia, Drugs, and Radiation, June 22–26, 1980.Google Scholar
  105. 104.
    Robinson, T. C., and Lele, P. P., An analysis of lesion development in the brain and in plastics by high-intensity focused ultrasound at low megaheartz frequencies, J. Acoust. Soc. Am. 51, 1333–1351, 1972.ADSGoogle Scholar
  106. 105.
    Parker, K., and Lele, P. P., discussion, Ann. N. Y. Acad. Sci. 335, 64, 1980.Google Scholar
  107. 106.
    Bladel, van J., Electromagnetic Fields ( New York: McGraw-Hill, 1964 ).Google Scholar
  108. 107.
    Kantor, G., New types of microwave diathermy applicators: comparison of performance with conventional types, Proc. Symp. Biol. E, f, fects and Meas. of Radiofrequency/Microwaves, Hazzard, D. G., ed. (DHEW pub. no. FDA-77–8026, July 1977 ).Google Scholar
  109. 108.
    Holt, J. A. G., The use of VHF radiowaves in cancer therapy, Aust. Radiol. 19, 223–241, 1975.Google Scholar
  110. Turner, P. F., Deep heating of cylindrical or elliptical tissue masses, Proc. 3d. Int. Symp. Cancer Therapy Hyperthermia, Drugs, and Radiation,June 22–26, 1980.Google Scholar
  111. 110.
    Turner, P., and Kumar, L., Computer solution for applicator heating patterns, Proc. 3d Int. Symp. Cancer Therapy Hyperthermia, Drugs, and Radiation, June 22–26, 1980.Google Scholar
  112. 111.
    Arcangeli, G., Cividalli, A., Creton, G., Nervi, C., Biological rationale for an optional scheduling of heat and ionizing radiation: Clinical results on neck node metastases, Proc. 3d Int. Symp. Cancer Therapy Hyperthermia, Drugs, and Radiation, June 22–26, 1980, pp. 54.Google Scholar
  113. 112.
    Trembly, B. S., Strohbein, J. W., de Seiges, D. C., and Douple, E. B., Hyperthermia induced by an array of invasive microwave antennas, Proc. 3d Int. Symp. Cancer Therapy Hyperthermia, Drugs, and Radiation, June 22–26, 1980, pp. 74.Google Scholar
  114. 113.
    Guy, A. W., Lehman, J. F., and Stonebridge, J. B., Therapeutic applications of electromagnetic power, Proc. IEEE 62, 55–75, 1974.Google Scholar
  115. 114.
    Amalric, R., Spitalier, J. M., Giraud, D., and Altschuler, C., Thermography in diagnosis of breast diseases, Bibl. Radiol. 6, 65–76, 1975.Google Scholar
  116. 115.
    Gershon-Cohen, J., Berger, S. M., Haberman, J. D., and Brueschke, E. E., Advances in thermography and mammography, Ann. N. Y. Acad. Sci. 121, 283–300, 1964.ADSGoogle Scholar
  117. 116.
    Gautherie, M., Bourjal, P., Quenneville, Y., and Gros, C., Puissance thermogène des epithéliomas mammaries, I. Determination par thermométrie intratumorale et thermographie infrarouge cutanée, Rev. Eur. Etud. Clin. Biol. 17, 776–781, 1972.Google Scholar
  118. 117.
    Gautherie, M., Thermopathology of breast cancer: Measurement and analysis of in vivo temperature and blood flow, Ann. N. Y. Acad. Sci. 335, 383–415, 1980.ADSGoogle Scholar
  119. 118.
    Reinhold, H. S., van der Zee, J., Faithfull, N. S., and van Rhoon, G. C., Utilization of the Siemens unit techniques, Proc. 3d Int. Symp. Cancer Therapy Hyperthermia, Drugs, and Radiation, June 22–26, 1980, pp. 114.Google Scholar
  120. 119.
    Cullino, P. M., Yi, P. N., and Grantham, F. H., Relationship between temperature and blood supply or consumption of oxygen and glucose by rat mammary carcinomas, J. Nat. Cancer Inst. 60, 835–847, 1978.Google Scholar
  121. 120.
    Dickson, J. A., Suzanger, M., In vitro-vivo studies on the susceptibility of the solid Yoshida sarcoma to drugs and hyperthermia, Cancer Res. 34, 1263–1274, 1974.Google Scholar
  122. 121.
    Herman, T. S., Zukoski, C. F., and Anderson, R. M., Whole-body hyperthermia via blanket technique, Proc. 3d Int. Symp. Cancer Therapy Hyperthermia, Drugs, and Radiation, June 22–26, 1980, p. 112.Google Scholar
  123. 122.
    Stoner, E. K., Luminous and infrared heating, in Therapeutic Heat and Cold, 2d ed., Licht, S., ed. ( New Haven, CT: E. Licht Publishers, 1965 ), pp. 252–265.Google Scholar
  124. 123.
    Henderson, M. A., and Pettigrew, R., Induction of controlled hyperthermia in treatment of cancer, Lancet 1, 1275–1277, 1971.Google Scholar
  125. 124.
    Levin, W., Wasserman, H., and Blair, R. M., Tumor temperature augmentation utilizing 433–MHz microwaves in patients undergoing whole-body hyperthermia, Proc. 3d Int. Symp. Cancer Therapy Hyperthermia, Drugs, and Radiation, June 22–26, 1980, p. 20.Google Scholar
  126. 125.
    Law, H. T., and Pettigrew, R. T., Heat transfer in whole-body hyperthermia, Ann. N. Y. Acad. Sci. 335, 298–310, 1980.ADSGoogle Scholar
  127. 126.
    Cavaliere, R., Moricca, G., DiFillippo, F., Caputo, A., Heat transfer problems during local perfusion in cancer treatment, Ann. N. Y. Acad. Sci. 335, 311–326, 1980.ADSGoogle Scholar
  128. 127.
    Stehlin, J. S., Hyperthermic perfusion for melanoma of the extremities: Experience with 65 patients, 1967 to 1979, Ann. N. Y Acad. Sci. 335, 352–355, 1980.ADSGoogle Scholar
  129. 128.
    Sutton, C. H., Discussion., Ann. N. Y. Acad. Sci. 335, 45–47, 1980.Google Scholar
  130. 129.
    Strauss, A. A., Immunologic Resistance to Carcinoma Produced by Electrocoagulation, Based on Fifty-Seven Years of Experimental and Clinical Results (Springfield, IL: Charles C. Thomas, 1969 ).Google Scholar
  131. 130.
    Jain, R. K., Transient temperature distributions in an infinite-perfused medium due to a time-dependent, spherical heat source, J. Biomech. Eng., Trans. ASME 101, 82–86, 1979.Google Scholar
  132. 131.
    Sandhu, T. S., Kowal, H., and Johnson, R. J., The development of hyperthermia microwave generators and thermometry, Int. J. Rad. Oncol. Biol. Phys. 1: suppl. 100, 1976.Google Scholar
  133. 132.
    Subjeck, J., Sciandra, J., Johnson, R., Drechsel, R., and Kowal, H., Cell survival dependence on heating method, Proc. 3d Int. Symp. Cancer Therapy Hyperthermia, Drugs, and Radiation, June 22–26, 1980, pp. 46.Google Scholar
  134. 133.
    Kritikos, H. N., and Schwan, H. P., Potential temperature rise induced by electromagnetic field in brain tissues, IEEE Trans. Biomed. Eng. 26, 29–34, 1979.Google Scholar
  135. 134.
    Strom, F. K., Morton, D. L., Kaiser, L., Harrison, W. H., Elliott, R. S., Weisenberger, T., Parker, R. G., and Haskell, C. M., Clinical local hyperthermia by radiofrequency: A review, Proc. 3d Int. Symp. Cancer Therapy Hyperthermia, Drugs, and Radiation, June 22–26, 1980, pp. 108.Google Scholar
  136. 135.
    Hahn, E. W., and Kim, J. H., Clinical observations on the selectve heating of cutaneous tumors with the radio-frequency inductive method, Ann. N. Y. Acad. Sci. 335, 347–355, 1980.ADSGoogle Scholar
  137. 136.
    Overgaard, J., Influence of sequence and interval on the biological response to combined hyperthermia and radiation, Proc. 3d Int. Symp. Cancer Therapy Hyperthermia, Drugs, and Radiation, June 20–22, 1980, pp. 105–108.Google Scholar
  138. 137.
    Hahn, G. M., Studies on drug-hyperthermia interaction, Proc. 3d Int. Symp. Cancer Therapy Hyperthermia, Drugs, and Radiation June 22–26, 1980.Google Scholar
  139. 138.
    Licht, S., Therapeutic Heat and Cold, 2d ed. ( Baltimore: Waverly Press, 1965 ).Google Scholar
  140. 139.
    Greene, J., Microwave diathermy: The invisible healer (HEW pub. no. FDA-79–8085, Feb. 1979 ).Google Scholar
  141. 140.a)
    Gullino, P. M., and Grantham, F. H., Studies on the exchange of fluids between host and tumor, I. A method growing “tissue-isolated” tumors in laboratory animals, J. Nat. Cancer Inst. 27, 679–693, 1961.).Google Scholar
  142. b).
    Gullino, P. M., and Grantham, F. H., Studies on the exchange of fluids between host and other tumor, II. The blood flow of hepatomas and other tumors in rats and mice, J. Nat. Cancer Inst. 27, 1465–1491, 1961.Google Scholar
  143. 141.
    Song, C. W., Payne, J. T., and Levitt, S. H., Vascularity and blood flow in X-irradiated Walker carcinoma 256 of rats, Radiology 104, 693–697, 1972.Google Scholar
  144. 142.
    Kjartansson, I. E., Tumour circulation: An experimental study in the rat with a comparison of different methods for estimation of tumour blood flow, Acta Chir. Scand. Suppl. 471, 1–74, 1976.Google Scholar
  145. 143.
    Dickson, J. A., Calderwood, S. K., Temperature range and selective sensitivity of tumors to hyperthermia: A critical review, Ann. N. Y. Acad. Sci. 335, 180–205, 1980.ADSGoogle Scholar
  146. 144.
    Allen, N., Goldman, H., Gordon, W. A., and Clendenon, N. R., Topographic blood flow in experimental nervous system tumors and surrounding tissues, Trans. Am. Neurol. Assoc. 100, 157, 1975.Google Scholar
  147. 145.
    Takacs, L., Debreczeni, L. A., and Farsang, C., Circulation in rats with Guerin carcinoma, J. Appl. Physiol. 38, 696, 1975.Google Scholar
  148. 146.
    Moller, U., and Bojsen, J., Temperature and blood flow measurements in and around 12–dimethylbenz(a) anthracene-induced tumours and Walker 256 Carcinomas in rats, Cancer Res. 35, 3116–3121, 1975.Google Scholar
  149. 147.
    Endrich, B., Intaglietta, M., Reinhold, H. S., and Gross, J. F., Tissue perfusion in-homogeneity during early tumor growth in rats, J. Nat. Cancer Inst. 62, 387–395, 1979.Google Scholar
  150. 148.
    Rogers, W., Tissue and blood flow in transplantable tumors of the mouse and hamster, piss. Abstr. Int. B 28, 5185, 1968.Google Scholar
  151. 149.
    Robert, J., Martin, J., and Burg, C., Evolution de la vascularisation d’une tumeur isolgue solide de la souris au cours de sa croissance, Strahlentherapie 133, 621, 1967.Google Scholar
  152. 150.
    Peterson, H.-I., Appelgren, K. L., Rudenstam, C.-M., and Lewis, D. H., Studies on the circulation of experimental tumours, I, Effect of induced fibrinolysis and antifibrinolysis on capillary blood flow and the capillary transport function of two experimenal tumours in the mouse, Eur. J. Cancer 5, 91, 1969.Google Scholar
  153. 151.
    Kallman, R. F., de Nardo, G. L., and Stasch, M. J., Blood flow in irradiated mouse sarcoma as determined by the clearance of Xenon-133, Cancer Res. 32, 483, 1972.Google Scholar
  154. 152.
    Gump, F. E., and White, R. L., Determination of regional tumor blood flow by krypton-85, Cancer (Philadelphia) 21, 871–875, 1969.Google Scholar
  155. 153.
    Mantyla, M. J., Regional blood flow in human tumors, Cancer Res. 39, 2304–2306, 1979.Google Scholar
  156. 154.
    Plengvanmit, U., Suwanik, R., Chearanai, O., Intrasupt, S., Sutayavanich, S., Kalayasiri, C., and Viranuvatti, V., Regional hepatic blood flow studied by intrahepatic injection of xenon in normals and in patients with primary carcinoma of the liver, with particular reference to the effect of hepatic artery ligation, Aust. N.Z.J. Med. 1, 44, 1972.Google Scholar
  157. 155.
    Gullino, P. M., Influence of blood supply on thermal properties and metabolism of mammary carcinomas., Ann. N. Y. Acad. Sci. 335, 1–21, 1980.ADSGoogle Scholar
  158. 156.
    Song, C. W., Effect of hyperthermia on vascular functions of normal tissues and experimental tumours, J. Nat. Cancer Inst. 60, 711–713, 1978.Google Scholar
  159. 157.
    Song, C. W., Proc. 3d Int. Symp. Cancer Therapy by Hyperthermia, Drugs, and Radiation, June 22–26, 1980.Google Scholar
  160. 158.
    Bicher, H. I., Sandhu, T. S., Vaupel, P., Hetzel, F. W., Physiological mechanisms of action of localized microwave hyperthermia, Proc. 3d Int. Symp. Cancer Therapy Hyperthermia, Drugs, and Radiation, June 20–22, 1980, p. 118.Google Scholar
  161. 159.
    Robinson, J. E., McCulloch, D., McCready, W. A., Blood perfusion of murine tumor at normal and hyperthermal temperatures, Proc. 3d Int. Symp. Cancer Therapy by Hyperthermia, Drugs, and Radiation, June 20–22, 1980, p. 77.Google Scholar
  162. 160.
    Nussbaum, G. H., Emami, B., Tenhaken, R. K., Hahn, N., and Hughes, W. L., Changes in tumor blood flow following hyperthermia, Int. J. Rad. Oncol. Biol. Physics,in press.Google Scholar
  163. 161.
    Reinhold, H. S., Blachiewicz, B., Berg-Blok, A., Decrease in tumor microcirculation during hyperthermia, Proc. 2d Int. Symp. Cancer Therapy Hyperthermia and Radiation ( Essen: Urban and Schwarzenberg, 1978 ), pp. 231–232.Google Scholar
  164. 162.
    Reinhold, H. S., and van den Berg-Blok, A., Enhancement of thermal damage to sandwich tumours by additional treatment, Proc. 3d Int. Symp. Cancer Therapy Hyperthermia, Drugs, and Radiation, June 20–22, 1980, p. 96.Google Scholar
  165. 163.
    Eddy, H. A., Alterations in tumor microvasculature during hyperthermia, Radiology 137, 515–522, 1980.Google Scholar
  166. 164.
    Eddy, H. A., Sutherland, R. M., Chielewski, R., Tumor microvascular response: Hyperthermia, drug, radiation combinations, Proc. 3d Int. Symp. Cancer Therapy Hyperthermia, Drugs, and Radiation, 1980.Google Scholar
  167. 165.
    Westermark, N., The effect of heat upon rat tumors, Scan. Arch. Physiol. 52, 257–322, 1927.Google Scholar
  168. 166.
    Dickson, J. A., The effects of hyperthermia in animal tumour systems, Rec. Results Cancer Res. 59, 43–111, 1977.Google Scholar
  169. 167.
    Schwan, H. P., Heating of fat—muscle layers by electromagnetic and ultrasonic diathermy, Proc. AIEE 72, 483–487, 1953.Google Scholar
  170. 168.
    Schwan, H. P., and Piersol, G. M., The absorption of electromagnetic energy in body tissues, Am. J. Phys. Med. 33, 371, 1954.Google Scholar
  171. 169.
    Schwan, H. P., and Piersol, G. M., The absorption of electromagnetic energy in body tissues, I. Biophysical aspects, II. Physiological aspects, Am. J. Phys. Med. 33, 371–404, 1954;Google Scholar
  172. Schwan, H. P., and Piersol, G. M., The absorption of electromagnetic energy in body tissues, I. Biophysical aspects, II. Physiological aspects, Am. J. Phys. Med. 34, 425–448, 1955.Google Scholar
  173. 170.
    Schwan, H. P., and Li, K., Hazards due to total body irradiation by radar, Proc. IRE 44, 1572–1581, 1956.Google Scholar
  174. 171.
    Johnson, C. C., and Guy, A. W., Nonionizing electromagnetic wave effects in biological materials and systems, Proc. IEEE 60, 692–717, 1972.Google Scholar
  175. 172.
    Johnson, C. C., et al., Electromagnetic power absorption in anisotropic tissue media, IEEE Trans. Microw. Theor. Tech. MTT-23, 52932, 1975–a.Google Scholar
  176. 173.
    Massoudi, H., Durney, C. H., and Johnson, C. C., A geometrical optics and an exact solution for internal fields in the energy absorption by a cylindrical model of man irradiated by an electromagnetic plane wave, Radio Sci. 14, 35–42, 1979.ADSGoogle Scholar
  177. 174.
    Ho, H., Guy, A. W., Sigelmann, R. A., and Lehman, J. F., Electromagnetic heating patterns in circular cylindrical models of human tissue, Proc. 8th Int. Conf. Med. Biol. Eng., July 1969.Google Scholar
  178. 175.
    Ho, H. S., Dose rate distribution in triple-layered dielectric cylinder with irregular cross-section irradiated by planewave sources, J. Microw. Power 10, 421–431, 1975.Google Scholar
  179. 176.
    Anne, A., Scattering and absorption of microwaves by dissipative dielectric objects: the biological significance and hazard to mankind (Ph.D. diss., University of Pennsylvania, Philadelphia, 1963 ).Google Scholar
  180. 177.
    Kritikos, H. N., and Schwan, H. P., Hot spots generated in conducting spheres by EM waves and biological implications, IEEE Trans. Biomed. Eng. BME-19, 53–58, 1972.Google Scholar
  181. 178.
    Kritikos, H. N., and Schwan, H. P., The distribution of heating potential inside lossy spheres, IEEE Trans. Biomed. Eng. BME-22, 457–463, 1975.Google Scholar
  182. 179.
    Lin, J. C., Guy, A. W., and Johnson, C. C., Power deposition in a spherical model of man exposed to 1–20 MHz electromagnetic fields, IEEE Trans. Microw. Theor. Tech. MTT-21, 791–797, 1973.Google Scholar
  183. 180.
    Lin, J. C., et al., Microwave selective brain heating, J. Microw. Power 8, 275–286, 1973.Google Scholar
  184. 181.
    Ho, H. S., Contrast of dose distribution in phantom leads due to aperture and planewave sources, Ann. N. Y. Acad. Sci. 247, 454–472, 1975.ADSGoogle Scholar
  185. 182.
    Hand, J. W., Microwave heating patterns in simple tissue models, Phys. Med. Biol. 22, 981–987, 1977.Google Scholar
  186. 183.
    Kritikos, H. N., and Schwan, H. P., Formation of hot spots in multilayer spheres, IEEE Trans. Biomed. Eng. BME-23, 168–172, 1976.Google Scholar
  187. 184.
    Shapiro, A. R., Lutomirski, R. F., and Yura, H. T., Induced heating within a cranial structure irradiated by an electromagnetic plane wave, IEEE Trans. Microw. Theor. Tech. MTT-19, 187–196, 1971.Google Scholar
  188. 185.
    Joines, W. T., and Spiegel, R. J., Resonance absorption of microwaves by the human skull, IEEE Trans. Biomed. Eng. BME-21, 46–48, 1974.Google Scholar
  189. 186.
    Weil, C. M., Absorption characteristics of multilayered sphere models exposed to UHF/Microwave radiation, IEEE Trans. Biomed. Eng. BME-22, 468–476, 1975.Google Scholar
  190. Neuder, S. M., et al.,Microwave power density absorption in a spherical multilayered model of the heat, in Biological Effects of Electromagnetic Waves,vol. 2, Johnson, C. C., and Shore, M. L., eds. (Washington, D.C.: HEW pub. no. FDA-77–8011, Dec. 1976), pp. 199–210.Google Scholar
  191. 188.
    Johnson, C. C., Durney, C. H., and Massoudi, H., Long-wavelength electromagnetic power absorption in prolate spheroidal models of man and animals, IEEE Trans. Microw. Theor. Tech. MTT-23, 739–747, 1975.Google Scholar
  192. 189.
    Gandhi, O. P., Hagerman, M. J., and D’Andrea, J. A., Partbody and multibody effects on absorption of radiofrequency electromagnetic energy by animals and by models of man, Radio Sci. 14, 15–21, 1979.ADSGoogle Scholar
  193. 190.
    Wu, C., and Lin, J. C., Absorption and scattering of electromagnetic waves by prolate spheroidal model of biological structures, in Proc. 3d Int. Symp. Cancer Therapy Hyperthermia, Drugs, and Radiation, June 20–22, 1980, pp. 142–145.Google Scholar
  194. 191.
    Barber, P. W., Electromagnetic power deposition in prolate spheroidal models of man and animals at resonance, IEEE Trans. Biomed. Eng. BME-24, 513–521, 1977.Google Scholar
  195. 192.
    Rowlinson, G. J., and Barber, P. W., Absorption of higher frequency RF energy in biological models: Calculations based on geometrical optics, Radio Sci. 14, 43–50, 1979.ADSGoogle Scholar
  196. 193.
    Massoudi, H., Durney, C. H., and Johnson, C. C., Long wavelength electromagnetic power absorption in ellipsoidal models of man and animals, IEEE Trans. Microw. Theor. Tech. MTT-25, 47–52, 1977.Google Scholar
  197. 194.
    Wu, T. K., and Tsai, L. L., Electromagnetic fields induced inside arbitrary cylinders of biological tissues, IEEE Trans. Microw. Theor. Tech. MTT-25, 61–65, 1977.Google Scholar
  198. 195.
    Neuder, S. M., and Meijer, P. H. E., Finite-element variational calculus approach to the determination of electromagnetic fields in irregular geometry, in Biological Effects of Electromagnetic Waves, vol. 2, Johnson, C. C., and Shore, M. L., eds. (Washington, D.C.: HEW pub. no. FDA-77–8011, Dec. 1976 ), pp. 193–198.Google Scholar
  199. 196.
    Livesay, D. E., and Chen, K., Electromagnetic fields induced inside arbitrary shaped biological bodies, IEEE Trans. Microw. Theor. Tech. MTT-22, 1273–1280, 1974.Google Scholar
  200. 197.
    Guru, B. S., and Chen, K. M., Experimental and theoretical studies on electromagnetic fields induced inside finite biological bodies, IEEE Trans. Microw. Theor. Tech. MTT-24, 433–440, 1976.Google Scholar
  201. 198.
    Rukspollmuang, S., and Chen, K. M., Heating of spherical versus realistic models of human and infrahuman heads by electromagnetic waves, Radio Sci. 14, 51–62, 1979.ADSGoogle Scholar
  202. 199.
    Chen, K. M., and Guru, B. S., Internal EM field and absorbed power density in human torsos induced by 1–500 MHz EM waves, IEEE Trans. Microw. Theor. Tech. MTT-25, 746–756, 1977.Google Scholar
  203. 200.
    Chen, K. M., and Guru, B. S., Induced EM fields inside human bodies irradiated by EM waves of up to 500 MHz, J. Microwave Power 12, 173–183, 1977.Google Scholar
  204. 201.
    Hagerman, M. J., and Gandhi, O. P., Numerical calculation of electromagnetic energy deposition in models of man with grounding and reflector effects, Radio Sci. 14, 23–29, 1979.ADSGoogle Scholar
  205. 202.
    Guy, A. W., and Lehman, J. F., On the determination of an optimum microwave diathermy frequency for a direct contact applicator, IEEE Trans. Biomed. Eng. BME-13, 76–87, 1966.Google Scholar
  206. 203.
    Guy, A. W., Electromagnetic fields and relative heating patterns due to a rectangular aperture source in direct contact with bilayered biological tissue, IEEE Trans. Microwave Theory Tech. MTT-19, 214–223, 1971.Google Scholar
  207. 204.
    Ho, H. S., Guy, A. W., Sigelmann, R. A., and Lehman, J. F., Microwave heating of simulated human limbs by aperture sources, IEEE Trans. Microwave Theory Tech. MTT-19, 224–231, 1971.Google Scholar
  208. 205.
    Hizal, A., and Baykal, Y. K., Heat potential distribution in an inhomogeneous spherical model of a cranial structure exposed to microwaves due to loop or dipole antennas, IEEE Trans. Microwave Theory Tech. MTT-26, 607–612, 1978.Google Scholar
  209. 206.
    Goss, S. A., Johnston, R. L., and Dunn, F., Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J. Acoust. Soc. Am. 64 (2), 423–457, August 1978.Google Scholar
  210. 207.
    Hahn, G. M., Kernahan, P., Martinez, A., Pounds, D., and Prionas, S., Some heat transfer problems associated with heating by ultrasound, microwaves, or radiofrequency, Ann. N. Y. Acad. Sci. 335, 327–346, 1980.ADSGoogle Scholar
  211. 208.
    Schepps, J. L., and Foster, K. R., The UHF and microwave dielectric properties of normal and tumor tissue, Phys. Med. Biol. 25, 1149–1159, 1980.Google Scholar
  212. 209.
    Peloso, R., Tuma, D. T., and Jain, R. K., Dielectric properties of solid tumors during normothermia and hyperthermia, IEEE Trans. Biomed. Eng.,in press.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Rakesh K. Jain
    • 1
  1. 1.Department of Chemical EngineeringCarnegie-Mellon UniversityPittsburghUSA

Personalised recommendations