Is There a Rational Basis for the Selection and/or Design of Chiral Stationary Phases for High-Performance Liquid Chromatography?

  • David R. Taylor
Part of the Chromatographic Society Symposium Series book series (CSSS)


One of the major problems facing the analyst in chiral high-performance liquid chromatography (HPLC) is that of selecting an appropriate chiral stationary phase (CSP) for a given analysis. Here an attempt is made to address the problem by proposing a simple algorithm for use in CSP selection, based upon Wainer’s classification of the five main types of CSP.

The prospect of using computer-assisted molecular modelling (CAMM) to assist in this area has aroused much interest, and several case histories of such investigations are described. These case histories highlight not only the power of CAMM in modelling diastereoisomeric interaction complexes, but also the associated problems which can arise.

In addition, suggestions for other approaches to the design of new CSPs are made, including work based upon both reciprocity of interaction and the development of new families of CSPs.


Tartaric Acid Chiral Stationary Phase Amino Alcohol Association Complex Lower Energy Conformer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. W. Wainer, “Practical Guide to Selection and Use of HPLC Chiral Stationary Phases”, J. T. Baker Inc., Phillipsburg, NJ (1988).Google Scholar
  2. 2.
    G. Blaschke, H.-P. Kraft and H. Markgraf, Chem. Ber., 113: 2318–2322 (1980).CrossRefGoogle Scholar
  3. 3.
    I. W. Waffler, Trends in Analytical Chem., 6: 125–134 (1987).CrossRefGoogle Scholar
  4. 4.
    D. M. McDaniel and B. G. Snider, J. Chromatogr., 404: 123–132 (1987).CrossRefGoogle Scholar
  5. 5.
    J. Hermansson and M. Eriksson, J. Liquid Chromatogr., 9: 621–639 (1986).CrossRefGoogle Scholar
  6. 6.
    I. W. Wainer and T. D. Doyle, J. Chromatogr., 284: 117–124 (1984).CrossRefGoogle Scholar
  7. 7.
    I. W. Wainer, T. D. Doyle, K. H. Donn and J. R Powell, J. Chromatogr., 306: 405–411 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    D. W. Armstrong, T. J. Ward, R. D. Armstrong and T. E. Beesley, Science, 232: 11321135 (1986).Google Scholar
  9. 9.
    J. N. Akanya, S. M. Hitchen and D. R. Taylor, Chromatographia, 16: 224–227 (1982).CrossRefGoogle Scholar
  10. 10.
    J. N Akanya and D. R. Taylor, J. Liquid Chromtogr., 10: 805–817 (1987).CrossRefGoogle Scholar
  11. 11.
    G. Bridger, PhD Thesis, UMIST (1987).Google Scholar
  12. 12.
    K. B. Lipkowitz, D. A. Demeter, R Zegarra, R. M. Larter and T. Darden, J. Comput. Chem., 9: 63–78 (1988).CrossRefGoogle Scholar
  13. 13.
    K. B. Lipkowitz, D. A. Demeter, C. A. Parish, J. M. Landwer and T. Darden, J. Comput. Chem, 8: 753–760 (1987).CrossRefGoogle Scholar
  14. 14.
    K. B. Lipkowitz, D. A. Demeter, C. A. Parish and T. Darden, Anal. Chem., 59: 1731–1733 (1987).CrossRefGoogle Scholar
  15. 15.
    U. Norinder and E. G. Sundholm, J. Liquid Chromatogr., 10: 2825–2844 (1987).CrossRefGoogle Scholar
  16. 16.
    S. Topiol, M. Sabio, J. Moroz and W. B. Caldwell, J. Am. Chem. Soc., 110: 8367–8376 (1988).CrossRefGoogle Scholar
  17. 17.
    S. Topiol and M. Sabio, J. Chromatogr., 461: 129–148 (1989).CrossRefGoogle Scholar
  18. 18.
    W. H. Pirkle and T. C. Pochapsky, J. Am. Chem Soc., 109: 5975–5982 (1987).CrossRefGoogle Scholar
  19. 19.
    W. H. Pirkle and R Dappen, J. Chromatogr., 404: 107–115 (1987).CrossRefGoogle Scholar
  20. 20.
    R Daeppen, V. R. Meyer and H. Arm, J. Chromatogr., 464: 39–47 (1989).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • David R. Taylor
    • 1
  1. 1.Chemistry DepartmentUMISTManchesterUK

Personalised recommendations