Advertisement

Chiral Chromatography on the Process Scale

  • Roger M. Smith
  • G. M. Hall
  • G. Subramanian
Part of the Chromatographic Society Symposium Series book series (CSSS)

Summary

Although in many cases it is possible to prepare enantiomerically pure agrochemicals and pharmaceuticals by stereospecific synthesis, it may often be more practical to use a less complicated synthesis followed by a chromatographic separation of the components of a racemic mixture. This will be true particularly when the unwanted isomers can be recycled back into the synthetic process. However, the relatively low capacity of preparative chromatographic systems makes this approach impractical for large volume chemicals, such as pesticides. However, larger samples can be handled on a process scale by overloading the column and carrying out the separation in the displacement mode.

Here the criteria for process scale separations are examined and compared with the criteria for analytical and preparative separations. Results from a series of studies to model high-capacity chiral separations on cyclodextrin and cellulose-based stationary phases are reported.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. J. Ariens, J. J. S. van Rensen and W. Welling, eds, “Stereoselectivity of Pesticides”, Elsevier, Amsterdam (1988).Google Scholar
  2. 2.
    W. H. De Camp, Chirality, 1: 2–6 (1989).CrossRefGoogle Scholar
  3. 3.
    E. J. Ariens, Eur. J. Drug Metab. Pharmacokinetics, 13: 307–308 (1988).CrossRefGoogle Scholar
  4. 4.
    E. J. Ariens in “Chiral Separations by HPLC”, A.M. Krstulovic, ed, Ellis Horwood, Chichester, 31 (1989).Google Scholar
  5. 5.
    S. G. Allenmark, “Chromatographic Enantioseparation: Methods and Applications”, Ellis Horwood, Chichester, 27 (1988).Google Scholar
  6. 6.
    S. G. Allenmark, “Chromatographic Enantioseparation: Methods and Applications”, Ellis Horwood, Chichester, 42 (1988).Google Scholar
  7. 7.
    W. J. Lough, ed, “Chiral Liquid Chromatography”, Biocide, Glasgow (1989).Google Scholar
  8. 8.
    M. Zief and L. J. Crane, eds, “Chromatographic Chiral Separations”, Chromatographic Science Series, Vol. 40, Marcel Dekker, New York (1988).Google Scholar
  9. 9.
    A, Collet in “Chiral Separations by HPLC”, A. M. Krstulovic, ed, Ellis Horwood, Chichester, 81–104 (1989).Google Scholar
  10. 10.
    G. Blaschke, Angew. Chem. Internat. Ed., 19:13–24 (1980).Google Scholar
  11. 11.
    K. Hostettman, M. Hostettman and A. Marson, “Preparative Liquid Chromatography,” Springer Verlag, Berlin (1986).CrossRefGoogle Scholar
  12. 12.
    B. A. Bidlingmeyer, “Preparative Liquid Chromatography,” J. Chromatography Library, Vol. 38, Elsevier, Amsterdam (1987).Google Scholar
  13. 13.
    K. Jones, Chromatographia, 25: 547–559 (1988).CrossRefGoogle Scholar
  14. 14.
    E. Grushka, ed, “Preparative-Scale Chromatography”, Chromatographic Science Series, Vol. 46, Marcel Dekker, New York (1988).Google Scholar
  15. 15.
    J. H. Knox and H. M. Pyper, J. Chromatogr, 363: 1–30 (1986).CrossRefGoogle Scholar
  16. 16.
    G. Guiochon and A. Katti, Chromatographia, 24: 165–189 (1987).CrossRefGoogle Scholar
  17. 17.
    A. Katti and G. Guiochon, Anal. Chem, 61: 982–990 (1989).CrossRefGoogle Scholar
  18. 18.
    L. R. Snyder, C. A. Cox and P. E. Antle, Chromatographia, 24: 82–96 (1987).CrossRefGoogle Scholar
  19. 19.
    S. G. Allenmark, “Chromatographic Enantioseparation: Methods and Applications,” Ellis Horwood, Chichester, 192 (1988).Google Scholar
  20. 20.
    N. Nimura, in “Chiral Separations by HPLC”, A.M. Krstulovic, ed, Ellis Horwood, Chichester, 107–123 (1989).Google Scholar
  21. 21.
    C. Pettersson, in “Chiral Separations by HPLC”, A. M. Krstulovic, ed, Ellis Horwood, Chichester, 124–146 (1989).Google Scholar
  22. 22.
    D. Sybilska and J. Zukowski, in “Chiral Separations by HPLC”, A. M. Krstulovic, ed, Ellis Horwood, Chichester, 147–172 (1989).Google Scholar
  23. 23.
    I. W. Wainer, Trends Anal. Chem, 6: 125–134 (1987).CrossRefGoogle Scholar
  24. 24.
    A. C. Mehta, J. Chromatogr, 426: 1–13 (1988).CrossRefGoogle Scholar
  25. 25.
    W. H. Pirkle and T. C. Pochapsky, Chem. Rev, 89: 347–362 (1989).CrossRefGoogle Scholar
  26. 26.
    W. H. Pirkle and J. M. Finn, J. Org. Chem, 47: 4037–4040 (1982).CrossRefGoogle Scholar
  27. 27.
    R. Dappen, H. Arm and V. R Meyer, J. Chromatogr, 373: 1–20 (1986).CrossRefGoogle Scholar
  28. 28.
    P. Erlandson, L. Hansson and R. Isaksson, J. Chromatogr, 370: 475–483 (1986).CrossRefGoogle Scholar
  29. 29.
    S. G. Allenmark, Chem. Sci, 20: 5–10 (1982).Google Scholar
  30. 30.
    G. Blaschke, J. Liq. Chromatogr, 9: 341–368 (1986).CrossRefGoogle Scholar
  31. 31.
    A. Ichida, T. Shibata, I. Okamoto, Y. Yuki, H. Namikoshi and Y. Toya, Chromatographia, 19: 280–284 (1984).CrossRefGoogle Scholar
  32. 32.
    S. M. Han and D. W. Armstrong, in “Chiral Separations by HPLC”, A.M. Krstulovic, ed, Ellis Horwood, Chichester, 208–284 (1989).Google Scholar
  33. 33.
    K. H. Rimbock, F. Kastner and A. Mannschreck, J. Chromatogr, 329: 307–310 (1985).CrossRefGoogle Scholar
  34. 34.
    Y. Okamoto, S. Honda, K. Hatada and H. Yuki, J. Chromatogr, 350: 127–134 (1985).CrossRefGoogle Scholar
  35. 35.
    S. Ostrove, W GC Magazine, 7: 550–554 (1989).Google Scholar
  36. 36.
    Cs. Horvath, J. Frenz and Z. El Rassi, J. Chromatogr, 255: 273–293 (1983).CrossRefGoogle Scholar
  37. 37.
    G. Vigh, G. Quintero and G. Farkas, J. Chromatogr, 506: 481–493 (1990).CrossRefGoogle Scholar
  38. 38.
    G. Wahlstrom, Life Science, 5: 1781–1790 (1966).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Roger M. Smith
    • 1
  • G. M. Hall
    • 2
  • G. Subramanian
    • 2
  1. 1.Departments of ChemistryLoughborough University of TechnologyLeicestershireUK
  2. 2.Chemical EngineeringLoughborough University of TechnologyLeicestershireUK

Personalised recommendations